YAML Ain’t Markup Language (YAML ™)
Version 1.2

3" Edition, Patched at 2009-10-01

Oren Ben-Kiki <oren@ben-kiki.org>
Clark Evans <cce@clarkevans.com>
Ingy d6t Net <ingy@ingy.net>

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Ain’t Markup Language (YAML ™) Version 1.2

3" Edition, Patched at 2009-10-01
by Oren Ben-Kiki, Clark Evans, and Ingy dot Net

Latest (patched) version:

HTML: http://yaml.org/spec/1.2/spec.html

PDF: http://lyaml.org/spec/1.2/spec.pdf

PS: http://lyaml.org/spec/1.2/spec.ps

Errata: http://yaml.org/spec/1.2/errata.html
Previous (original) versionhttp://fyaml.org/spec/1.2/2009-07-21/spec.html
Copyright © 2001-2009 Oren Ben-Kiki, Clark Evans, Ingy dot Net

Status of this Document

This document reflects the third version of YAML data serialization language. The content of the specification was arrived at by cor
of its authors and through user feedback on the yaml-core mailing list. We encourage implementers to please update their software wit
for this version.

The primary objective of this revision is to bring YAML into compliance with JISON as an official subset. YAML 1.2 is compatible witt
for most practical applications - this is a minor revision. An expected source of incompatibility with prior versions of YAML, especial
syck implementation, is the change in implicit typing rules. We have removed unique implicit typing rules and have updated these
align them with JSON's productions. In this version of YAML, boolean values may be serializaceas 6r “false ”; the empty scalar
as ‘hull ". Unquoted numeric values are a superset of JSON's numeric production. Other changes in the specification were the rel
the Unicode line breaks and production bug fixes. We also define 3 built-in implicit typing rule sets: untyped, strict JSON, and a more
YAML rule set that extends JSON typing.

The difference between late 1.0 drafts which syck 0.55 implements and the 1.1 revision of this specification is much more extensive. \
usability issues with the tagging syntax. In particular, the single exclamation was re-defined for private types and a simple prefixing me
was introduced. This revision also fixed many production edge cases and introduced a type repository. Therefore, there are several

ibilities between syck and this revision as well.

The list of known errors in this specification is available at http://yaml.org/spec/1.2/errata.html. Please report errors in this documer
yaml-core mailing list. This revision contains fixes for all errors known as of 2009-10-01.

We wish to thank implementers who have tirelessly tracked earlier versions of this specification, and our fabulous user communit)
feedback has both validated and clarified our direction.

Abstract

YAML™ (rhymes with “camel”) is a human-friendly, cross language, Unicode based data serialization language designed around the c
native data types of agile programming languages. It is broadly useful for programming needs ranging from configuration files to |
messaging to object persistence to data auditing. Together with the Unicode standard for characters, this specification provides all th
ation necessary to understand YAML Version 1.2 and to create programs that process YAML information.

This document may be freely copied, provided it is not modified.

http://yaml.org/spec/1.2/spec.html
http://yaml.org/spec/1.2/spec.pdf
http://yaml.org/spec/1.2/spec.ps
http://yaml.org/spec/1.2/errata.html
http://yaml.org/spec/1.2/2009-07-21/spec.html
http://lists.sourceforge.net/lists/listinfo/yaml-core
http://yaml.org/spec/1.2/errata.html
http://www.unicode.org/
http://www.w3.org/Style/XSL
http://www.renderx.com/

Table of Contents

I a1 Yo [0 T3 1o o P 1.
N T T T 1 £ 1.
7 4 o T Y o AP 1.
G T = L= F= o T T (o T 1T N S 2
I o =Y F= o o T (o 41, PP 3
ST =1 11011 o] (o |V PRSPPI 3

D2 = =V 1= PR 4.
2 T O 1| =T 1o 1 4.
D 11 (o] ([= TP 5.
G T 1= 1 =Y 6.
2 T =T 1 PP 7.
2.5, FUIl Length EXamIDIe. ...ttt e ettt et 8

3. Processing YAML INTOIMEALION. ... ettt e et e ettt ettt et e et et e st e e e e 9
B L PGB S S S .ottt e ———— ettt et m————— e eaeeaneeateiieeateeateinaaas 9.

L L UM ettt ettt ettt e e e et et s e e ettt 10

G 700 02 1 - T PSPPI 10

I T2 {0 g ¢ aF= Y] T 1Y/ o T [= £ 11

3.2.1. Representation Graph..........c.ieiii e e e e ————— 12

G T2 It R N o T =T 12

T 2 =T S PP 13

100 IRC T N o o [@e] 1] o F= 11 K= o] o PP 13

I = -1 1= V1[0 o I (=Y = P 14

K B £ T @] (o [S PP P PP UPRTIUN 14

I Y g 1ol aTo] (3= LT I A L= LY 14

I B o =TT =T = Lo TR 1 (=T 1 o RS 15

32,3, L. NOUE Sy, ..ttt ittt et e et ———— e 16

TR B Yo | = Ll o] 1 4 F= £ P 16

G P TR T @0 0] 14 =1 1 | £ P 16
T2 B B T =Y 11 V/ R 16

3.3, L0ading Failure POINTSttt e ettt ettt ettt 17

3.3.1. Well-Formed Streams and ldentified AlASES..........oiiiiiii e e e e 17

R i S (=TT V=T B =T - S PP PRTN 18

TR S T S (=Toto o | P4=To Ir=TaTo ANV Z= Ul To B =T L S PP PP P 18

3.3 AVAIIADIE TaGS ... ettt ———— et m——— s 18

S V1= N o] 1)Y= o1 (o] o TP 19
I o To (U od 1 o] I =T =11 4 1] () P 19
4.2. Production Naming CONVENTIONSttt ettt ettt et e et et e e et et ettt e et et et e e e s e e 20

LT O 4 = = (o (=] £ NP 21
LT I O 1 F= 1 = (o (= =Y P 21
I O = = od (=T gl =1 g Tt o [o To L S PP 21
TG T 1 [0 [or= 1 (o] G O g F= = (ox =1 £ 22
N I [T =TT QO o F= = o (=] =P 25
5.5. WhIte SPACE CRArACIEIS it ettt ettt ettt s st e e e e 26
oI S I Y E=YoT =Y | F= T (=T T S O g = = Tod (Y O 27
I =S Tor=T o L= To 01 g T T T (] £ TP PR 28

(ST o T (o] {0 Tt 11 =P 30
B.1. INDENEALION SPACES. .. et ittt ettt ettt ettt ettt ettt ettt e e 30
5.2, SEPAIALION SPACES ..t ettt ettt ettt et ettt e em—— ettt e et e e a et e m——— e e a e a e n el 31
8.3, LN PrafiXES ittt e e e ettt ——— ettt araneaneas 31
8.4, Bty LIS ot e e ———— et 32
B.5. LINE FOIAING ... oiniiii e e e et et ettt ettt e m———— ettt 32
(S I T O 01 411 1 T=T | £ PP 34
B.7. SEPANALION LINMES ..t ettt et e e e e ——— et 35
LS TR B 11 (= Tox 1)Y= 35

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Ain’t Markup Language (YAML™)
Version 1.2

Lo S T B N | B T =T 1Y PR 36
R I B £ 1)Y= PP 37
R B = To o o 0 To [PP PRPPPRN 37
B.8.2. 2. TG PraliXeS. e e —————— e 39

OIS I N (oo (o3 e Co] o 1T 1 [PP P PP 39
Lo I N[To [T =T PP 40
B.9.2. NOOE ANCNOIS ...ttt e e e et ettt et ettt ettt et e et e et a———— et et e e e 42

A (0T S 1 [PRSPPI 43
A N [T T3 A L Lo [PP 43
A7 =101 o1V N\ Lo Lo = PR 43
7.3, FIOW SCAIAE SEYIES. ... et e ettt e ettt ettt ettt a e 44
7.3.1. DOUDIE-QUOTEA SEYIQ ... e ettt e ettt a et e e e ettt a e a e n s Al
7.3.2. SINGIE-QUOTEA Sty IO . ..o e e e et ettt ettt ettt ————— e 46
7.3.3. Plain SEYle .. e m————— e a7
7.4, FIOW COllECHION StYIES. .. ettt ettt ettt et et et et e e et r et e s et et e e e e e e e 49
A T (01T ST =T [1= o L TP 49
A [1V A1V = Vo] o] 1 o PP 50
A T (011N N (o o [T PP 54
8. BIOCK Sty IS ..ottt e e ————— e ettt e e e e aaaaas 55
8.1, BIOCK SCalar STYIES. ... ettt e ettt et a e ————— s 55
8.1.1. BIOCK SCalAr HEAUEIS. e ettt e e ettt e ettt et e e e e s e et e e e e e 55
8.1.1.1. BIock INdentation INCICALOLt e ettt et e e e e e e e e eneann 55
8.1.1.2. Block ChompPing INGICALON.uiieiie ettt et ettt e et e e e et e e a e amnn 56
B.L.2. LIEIaAl SEYIE ..o e et ———— et aaans 58

8. 1.3, FOIdEA StYI. .o et m———— et aas 59
8.2. BIOCK COlIECHION SEYIES. et e et ettt ettt ettt ettt et et et e e e e et e e aeae e 61
8.2.1. BIOCK SEOUEBNCES. ettt ettt ettt e et et et et e e e e e e e et e et e et a e e e e 62
I = (o Tod (g 1Y/ F= T o] o] Lo 1= TP 63
8.2.3. BIOCK NOUES . .. it e et ettt ettt ettt et et ettt e nenead 65

L N I O g - = ol £ g (=T o R TPPPPN 67
S TR B o Tl U 4 1= o | PP PP 6.7
LS 0 I I B To Tox 0 0T o L = R PP 67
0.1.2. DOCUMENE IMAIKEIS ..ot e ettt ettt e e et et et et et et e e o e et e e aeaeans 67
O.1.3. BAre DOCUMIEBNLSttt ettt ettt ettt et e et e et e e ettt e e e ettt e e et te et ettt et et s ommmme s e e e et e e e e e s 68

1S 0 I B ¢] o3 T T U [g1 (PP P PP 68
O.1.5. DIreCtIVES DOCUMIEBNTS. ... ittt ettt e et e ettt et et et e e r e a et re e e et e enen e s ammmme s e e e nend 69

S 11 (<=1 0 T PP RUPTR 69
10. RECOMMENAEA SCREMAS.t et e e e et ettt ettt et et e s e e e e re e ananas 71
10.1. Failsafe SCheMa. ettt e ettt a et e e et e emmmme et e e nanenenenenenene L
O 0 O I T - S TP 71
O O B 1= o 1T Tl 1Y =T o o g o PP 71
O 2 €= o 1T o ST To [= o Lo - PP 71
O e J 1 =T o 1= TS ¢ T PP 421
O I Yo =S To] U1 1o o RPN 72
10.2. JSON SCNBIM@ ...ttt et e ettt ettt et et e et ettt e e e e e
O 2 T I T - S TR 12
B0, 2.0 NUIE L e et e et ————— e 72
O 2 = T To] (=T o RPN 73
O T N 1 (=T [T PP 73
O e S (o =i o o | A PP 74
O - Yo =T] V11 o] o TP 74
O A 0o (IS Tl 1= o - W PP PPTPIN 76
O T B I T - S TP 76
OS2 I To =T] V11 o] o TP 76
O @ =T g ST ol [=T1 o S PRSI 4 4
8o 1= G PP 78

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 1. Introduction

“YAML Ain’'t Markup Language” (abbreviated YAML) is a data serialization language designed to be human-friendly and \
well with modern programming languages for common everyday tasks. This specification is both an introduction to the
language and the concepts supporting it, and also a complete specification of the information needed to develop applica
processing YAML.

Open, interoperable and readily understandable tools have advanced computing immensely. YAML was designed from
to be useful and friendly to people working with data. It uses Unicode printable characters, some of which provide structt
formation and the rest containing the data itself. YAML achieves a unique cleanness by minimizing the amount of strt
characters and allowing the data to show itself in a natural and meaningful way. For example, indentation may be used for s
colons separate key: value pairs, and dashes are used to create “bullet” lists.

There are myriad flavors of data structures, but they can all be adequately represented with three basic primitives: m
(hashes/dictionaries), sequences (arrays/lists) and scalars (strings/numbers). YAML leverages these primitives, and adds
typing system and aliasing mechanism to form a complete language for serializing any native data structure. While most progr
languages can use YAML for data serialization, YAML excels in working with those languages that are fundamentally built
the three basic primitives. These include the new wave of agile languages such as Perl, Python, PHP, Ruby, and Javasc

There are hundreds of different languages for programming, but only a handful of languages for storing and transferrir
Even though its potential is virtually boundless, YAML was specifically created to work well for common use cases su
configuration files, log files, interprocess messaging, cross-language data sharing, object persistence, and debugging of
data structures. When data is easy to view and understand, programming becomes a simpler task.

1.1. Goals

The design goals for YAML are, in decreasing priority:

1. YAML is easily readable by humans.

2. YAML data is portable between programming languages.

3. YAML matches the native data structures of agile languages.
4. YAML has a consistent model to support generic tools.

5. YAML supports one-pass processing.

6. YAML is expressive and extensible.

7. YAML is easy to implement and use.

1.2. Prior Art

YAML's initial direction was set by the data serialization and markup language discussions among SML-DEV members.
on, it directly incorporated experience from Ingy dét Net's Perl module Data::Denter. Since then, YAML has matured th
ideas and support from its user community.

http://www.docuverse.com/smldev/
http://search.cpan.org/dist/Data-Denter/
http://www.w3.org/Style/XSL
http://www.renderx.com/

Introduction

YAML integrates and builds upon concepts described by C, Java, Perl, Python, Ruby, RFC0822 (MAIL), RFC1866 (H
RFC2045 (MIME), RFC2396 (URI), XML, SAX, SOAP, and JSON.

The syntax of YAML was motivated by Internet Mail (RFC0822) and remains partially compatible with that standard. Fu
borrowing from MIME (RFC2045), YAML's top-level production is a stream of independent documents, ideal for message-
distributed processing systems.

YAML'’s indentation-based scoping is similar to Python’s (without the ambiguities caused by tabs). Indented blocks facilitat:
inspection of the data’s structure. YAML's literal style leverages this by enabling formatted text to be cleanly mixed witt
indented structure without troublesome escaping. YAML also allows the use of traditional indicator-based scoping simr
JSON's and Perl's. Such flow content can be freely nested inside indented blocks.

YAML'’s double-quoted style uses familiar C-style escape sequences. This enables ASCII encoding of non-printable or 8-t
8859-1) characters such as3B ”. Non-printable 16-bit Unicode and 32-bit (ISO/IEC 10646) characters are supported with es
sequences such asi003B " and “\UOOOO003B .

Motivated by HTML’s end-of-line normalization, YAML's line folding employs an intuitive method of handling line breaks.
single line break is folded into a single space, while empty lines are interpreted as line break characters. This technique al
paragraphs to be word-wrapped without affecting the canonical form of the scalar content.

YAML's core type system is based on the requirements of agile languages such as Perl, Python, and Ruby. YAML directly s
both collections (mappings, sequences) and scalars. Support for these common types enables programmers to use their |
native data structures for YAML manipulation, instead of requiring a special document object model (DOM).

Like XML’s SOAP, YAML supports serializing a graph of native data structures through an aliasing mechanism. Also like S
YAML provides for application-defined types. This allows YAML to represent rich data structures required for modern distrit
computing. YAML provides globally unique type names using a namespace mechanism inspired by Java’'s DNS-based |
naming convention and XML's URI-based namespaces. In addition, YAML allows for private types specific to a single applic

YAML was designed to support incremental interfaces that include both igaiNgxtEvent() ") and output (SendNex-
tEvent() ") one-pass interfaces. Together, these enable YAML to support the processing of large documents (e.g. tran
logs) or continuous streams (e.g. feeds from a production machine).

1.3. Relation to JSON

Both JSON and YAML aim to be human readable data interchange formats. However, JSON and YAML have different pric
JSON's foremost design goal is simplicity and universality. Thus, JSON is trivial to generate and parse, at the cost of r
human readability. It also uses a lowest common denominator information model, ensuring any JSON data can be easily p
by every modern programming environment.

In contrast, YAML's foremost design goals are human readability and support for serializing arbitrary native data structures
YAML allows for extremely readable files, but is more complex to generate and parse. In addition, YAML ventures beyor
lowest common denominator data types, requiring more complex processing when crossing between different programmin
onments.

YAML can therefore be viewed as a natural superset of JSON, offering improved human readability and a more complete
ation model. This is also the case in practice; every JSON file is also a valid YAML file. This makes it easy to migrate from
to YAML if/when the additional features are required.

JSON's RFC4627 requires that mappings keys merely “SHOULD” be unique, while YAML insists they “MUST” be. Technic
YAML therefore complies with the JSON spec, choosing to treat duplicates as an error. In practice, since JSON is silent
semantics of such duplicates, the only portable JSON files are those with unique keys, which are therefore valid YAML fi

It may be useful to define a intermediate format between YAML and JSON. Such a format would be trivial to parse (but n
human readable), like JSON. At the same time, it would allow for serializing arbitrary native data structures, like YAML. S
format might also serve as YAML's "canonical format". Defining such a “YSON" format (YSON is a Serialized Object Notat
can be done either by enhancing the JSON specification or by restricting the YAML specification. Such a definition is beyc
scope of this specification.

http://cm.bell-labs.com/cm/cs/cbook/index.html
http://java.sun.com/
http://www.perl.org/
http://www.python.org/
http://www.ruby-lang.org/
http://www.ietf.org/rfc/rfc0822.txt
http://www.ics.uci.edu/pub/ietf/html/rfc1866.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-xml.html
http://www.saxproject.org/
http://www.w3.org/TR/SOAP
http://www.json.org/
http://www.ietf.org/rfc/rfc4627.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Introduction

1.4. Relation to XML

Newcomers to YAML often search for its correlation to the eXtensible Markup Language (XML). Although the two langu
may actually compete in several application domains, there is no direct correlation between them.

YAML is primarily a data serialization language. XML was designed to be backwards compatible with the Standard Genel
Markup Language (SGML), which was designed to support structured documentation. XML therefore had many design con
placed on it that YAML does not share. XML is a pioneer in many domains, YAML is the result of lessons learned from
and other technologies.

It should be mentioned that there are ongoing efforts to define standard XML/YAML mappings. This generally requires
subset of each language be used. For more information on using both XML and YAML, please visit http://yaml.org/xml.

1.5. Terminology

This specification uses key words based on RFC2119 to indicate requirement level. In particular, the following words are
describe the actions of a YAML processor:

May The wordmay, or the adjectiveptional mean that conforming YAML processors are permitted taaéed nobehave
as described.

Should The wordshould or the adjectivéecommendednean that there could be reasons for a YAML processor to devic
from the behavior described, but that such deviation could hurt interoperability and should therefore be advertise
appropriate notice.

Must The wordmust or the ternrequiredor shall, mean that the behavior described is an absolute requirement of the ¢
cification.

The rest of this document is arranged as follows. Chapter 2 provides a short preview of the main YAML features. Chapter 3 d
the YAML information model, and the processes for converting from and to this model and the YAML text format. The bt
the document, chapters 4 through 9, formally define this text format. Finally, chapter 10 recommends basic YAML scherr

http://yaml.org/xml
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 2. Preview

This section provides a quick glimpse into the expressive power of YAML. It is not expected that the first-time reader grok
the examples. Rather, these selections are used as motivation for the remainder of the specification.

2.1. Collections

YAML'’s block collections use indentation for scope and begin each entry on its owBlig&.sequences indicate each entry
with a dash and spacé{ "). Mappings use a colon and spate (") to mark eactkey: value pairComments begin with an
octothorpe (also called a “hash”, “sharp”, “pound”, or “number sigrn#=).*

Example 2.1. Sequence of Scalars Example 2.2. Mapping Scalars to Scalars
(ball players) (player statistics)
- Mark McGwire hr: 65 # Home runs
- Sammy Sosa avg: 0.278 # Batting average
- Ken Griffey rbi: 147 # Runs Batted In
Example 2.3. Mapping Scalars to Sequences Example 2.4. Sequence of Mappings
(ball clubs in each league) (players’ statistics)
american: [
- Boston Red Sox name: Mark McGwire
- Detroit Tigers hr: 65
- New York Yankees avg: 0.278
national: -
- New York Mets name: Sammy Sosa
- Chicago Cubs hr: 63
- Atlanta Braves avg: 0.288

YAML also has flow styles, using explicit indicators rather than indentation to denote scope. The flow sequence is writte
comma separated list within square brackets. In a similar manner, the flow mapping uses curly braces.

Example 2.5. Sequence of Sequences Example 2.6. Mapping of Mappings
- [name , hryavg] Mark McGwire: {hr: 65, avg: 0.278}
- [Mark McGwire, 65, 0.278] Sammy Sosa: {
- [Sammy Sosa , 63, 0.288] hr: 63,
avg: 0.288
}

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

2.2. Structures

YAML uses three dashe$-(- ") to separate directives from document content. This also serves to signal the start of a doct
if no directives are present. Three dots.(") indicate the end of a document without starting a new one, for use in commur

ation channels.

Example 2.7. Two Documents in a Stream

(each with a leading comment)

Example 2.8. Play by Play Feed
from a Game

Ranking of 1998 home runs

- Mark McGwire
- Sammy Sosa
- Ken Griffey

Team ranking

- Chicago Cubs
- St Louis Cardinals

time: 20:03:20
player: Sammy Sosa
action: strike (miss)

time: 20:03:47
player: Sammy Sosa
action: grand slam

Repeated nodes (objects) are first identified byechor (marked with the ampersari®®), and are theraliased (referenced

with an asterisk -*") thereafter.

Example 2.9. Single Document with
Two Comments

Example 2.10. Node for Sammy Sosa”

appears twice in this document

hr: # 1998 hr ranking
- Mark McGwire
- Sammy Sosa

rbi:
1998 rbi ranking
- Sammy Sosa
- Ken Griffey

hr:
- Mark McGwire
Following node labeled SS
- &SS Sammy Sosa
rbi:
- *SS # Subsequent occurrence

- Ken Griffey

A question mark and spac&(") indicate a complex mapping key. Within a block collectlay;: value pairs can start immediately

following the dash, colon, or question mark.

Example 2.11. Mapping between Sequences

Example 2.12. Compact Nested Mapping

? - Detroit Tigers
- Chicago cubs

- 2001-07-23

? [New York Yankees,
Atlanta Braves]

: [2001-07-02, 2001-08-12,
2001-08-14]

H Products purchased
- item @ Super Hoop
quantity: 1

- item : Basketball
quantity: 4

- item @ Big Shoes
quantity: 1

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

2.3. Scalars

Scalar content can be written in block notation, usilitgral style (indicated by| ") where all line breaks are significant. Altern-
atively, they can be written with tHelded style(denoted by #") where each line break is folded to a space unless it ends
empty or a more-indented line.

Example 2.13. In literals, Example 2.14. In the folded scalars,
newlines are preserved newlines become spaces
ASCII Art >
- | Mark McGwire's
VIIVI| year was crippled
- by a knee injury.

Example 2.15. Folded newlines are preserved Example 2.16. Indentation determines scope
for "more indented" and blank lines

> name: Mark McGwire
Sammy Sosa completed another accomplishment: >
fine season with great stats. Mark set a major league
home run record in 1998.
63 Home Runs stats: |
0.288 Batting Average 65 Home Runs
0.278 Batting Average
What a year!

YAML'’s flow scalars include the plain style (most examples thus far) and two quoted styles. The double-quoted style pr:
escape sequences. The single-quoted style is useful when escaping is not needed. All flow scalars can span multiple |
breaks are always folded.

Example 2.17. Quoted Scalars Example 2.18. Multi-line Flow Scalars
unicode: "Sosa did fine.\u263A" plain:

control: "\b1998\t1999\t2000\n" This unquoted scalar

hex esc: "\x0d\x0a is \r\n" spans many lines.

single: ""Howdy!" he cried.' guoted: "So does this

quoted: ' # Not a "comment".' guoted scalar.\n"

tie-fighter: '[\-*-/|'

http://www.w3.org/Style/XSL
http://www.renderx.com/

Preview

2.4. Tags

In YAML, untagged nodes are given a type depending on the application. The examples in this specification generally
types from the fail safe schema. A few examples also usettheloat

seq, mapand str

schema. The repository includes additional types submasy

Example 2.19. Integers

, andnull
, omap, set and others.

Example 2.20. Floating Point

canonical: 12345
decimal: +12345
octal: 0014
hexadecimal: OxC

canonical: 1.23015e+3
exponential: 12.3015e+02
fixed: 1230.15

negative infinity: -.inf

not a number: .NaN

Example 2.21. Miscellaneous

Example 2.22. Timestamps

null:
booleans: [true, false]
string: '012345'

canonical: 2001-12-15T02:59:43.1Z
iS08601: 2001-12-14t21:59:43.10-05:00
Spaced: 2001-12-14 21:59:43.10 -5

Explicit typing is denoted with a tag using the exclamation polrY) ymbol. Global tags are URIs and may be specified in-

date: 2002-12-14

tag shorthand notation using a handle. Application-specific local tags may also be used.

Example 2.23. Various Explicit Tags

Example 2.24. Global Tags

not-date: !!str 2002-04-28

picture: !'binary |
ROIGODIhDAAMAIQAAP//9/X
17unp5WZmZgAAAOfn515eXv
Pz7Y60juDg4J+fn50Tk6enp
56enmleECcgggoBADs=

application specific tag: !something |
The semantics of the tag

above may be different for

different documents.

DATAG ! tag:clarkevans.com,2002:
--- Ishape
Use the ! handle for presenting
tag:clarkevans.com,2002:circle
- Icircle
center: &ORIGIN {x: 73, y: 129}
radius: 7
- lline
start: *ORIGIN
finish: { x: 89, y: 102 }
- llabel
start: *ORIGIN
color: OXFFEEBB

text: Pretty vector drawing.

Example 2.25. Unordered Sets

Example 2.26. Ordered Mappings

Sets are represented as a
Mapping where each key is
associated with a null value
--- llset

? Mark McGwire

? Sammy Sosa

? Ken Griff

Ordered maps are represented as
H A sequence of mappings, with

i each mapping having one key

--- llomap

- Mark McGwire: 65

- Sammy Sosa: 63

- Ken Griffy: 58

types from the JSON

http://yaml.org/type/binary.html
http://yaml.org/type/omap.html
http://yaml.org/type/set.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

2.5. Full Length Example

Below are two full-length examples of YAML. On the left is a sample invoice; on the right is a sample log file.

Example 2.27. Invoice

Example 2.28. Log File

--- I<tag:clarkevans.com,2002:invoice>
invoice: 34843
date :2001-01-23
bill-to: &id001
given : Chris
family : Dumars
address:
lines: |
458 Walkman Dr.
Suite #292
city : Royal Oak
state : Ml
postal : 48046
ship-to: *id001

product:
- sku : BL394D
quantity :4

description : Basketball
price : 450.00
- sku : BL4438H
quantity :1
description : Super Hoop
price : 2392.00
tax :251.42
total: 4443.52
comments:
Late afternoon is best.
Backup contact is Nancy
Billsmer @ 338-4338.

Time: 2001-11-23 15:01:42 -5
User: ed

\Warning:

This is an error message

for the log file

Time: 2001-11-23 15:02:31 -5
User: ed
\Warning:
A slightly different error
message.
Date: 2001-11-23 15:03:17 -5
User: ed
Fatal:
Unknown variable "bar"
Stack:
- file: TopClass.py
line: 23
code: |
X = MoreObject("345\n")
- file: MoreClass.py
line: 58
code: |-
foo = bar

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 3. Processing YAML Information

YAML is both a text format and a method for presenting any native data structure in this format. Therefore, this specifi
defines two concepts: a class of data objects called YAML representations, and a syntax for presenting YAML representa
a series of characters, called a YAML stream. A YApfbcessois a tool for converting information between these complemental
views. It is assumed that a YAML processor does its work on behalf of another module, caliglitation This chapter describes
the information structures a YAML processor must provide to or obtain from the application.

YAML information is used in two ways: for machine processing, and for human consumption. The challenge of reconciling
two perspectives is best done in three distinct translation stages: representation, serialization, and presentation. Repre
addresses how YAML views native data structures to achieve portability between programming environments. Serialization ¢
itself with turning a YAML representation into a serial form, that is, a form with sequential access constraints. Presentatio
with the formatting of a YAML serialization as a series of characters in a human-friendly manner.

3.1. Processes

Translating between native data structures and a character stream is done in several logically distinct stages, each wi
defined input and output data model, as shown in the following diagram:

Figure 3.1. Processing Overview

Application 3 YAML
1 Dump >
/Represent\ /Serialize\ / Present \
Native Representation Serialization Presentation
(Data Structure) | (Node Graph) (Event Tree) (Character Stream)
opaque tags, anchors, styles, comments,
program mapping/sequence/scalar, aliases, directives, spacing,
data ! canonical string values key order formatted string values, ...
\Construct/ \ Compose / \ Parse /
< Load

A YAML processor need not expose the serialization or representation stages. It may translate directly between nati
structures and a character stream (dump and load in the diagram above). However, such a direct translation should take
that the native data structures are constructed only from information available in the representation. In particular, mapp
order, comments, and tag handles should not be referenced during composition.

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

3.1.1.

3.1.2.

Dump

Dumpingnative data structures to a character stream is done using the following three stages:

Representing
Native Data
Structures

Serializing the
Representation
Graph

Presenting the
Serialization Tree

Load

YAML representanynative data structure@ising three node kinds: sequence - an ordered series of entr
mapping - an unordered association of unique keys to values; and scalar - any datum with opaque st
presentable as a series of Unicode characters. Combined, these primitives generate directed graph str
These primitives were chosen because they are both powerful and familiar: the sequence correspon
Perl array and a Python list, the mapping corresponds to a Perl hash table and a Python dictionary. The
represents strings, integers, dates, and other atomic data types.

Each YAML node requires, in addition to its kind and content, a tag specifying its data type. Type spec
are either global URIs, or are local in scope to a single application. For example, an integer is represel
YAML with a scalar plus the global taggg:yaml.org,2002:int ". Similarly, an invoice object, par-
ticular to a given organization, could be represented as a mapping together with the Idoaldeg“ "
This simple model can represent any data structure independent of programming language.

For sequential access mediums, such as an event callback API, a YAML representatiorseristdseito

an ordered tree. Since in a YAML representation, mapping keys are unordered and nodes may be refe
more than once (have more than one incoming “arrow”), the serialization process is required to impo
ordering on the mapping keys and to replace the second and subsequent references to a given node w
holders called aliases. YAML does not specify how tisesialization detailsare chosen. Itis up to the YAML
processor to come up with human-friendly key order and anchor names, possibly with the help of the a
ation. The result of this process, a YAML serialization tree, can then be traversed to produce a series o
calls for one-pass processing of YAML data.

The final output process fesentingthe YAML serializations as a character stream in a human-friend
manner. To maximize human readability, YAML offers a rich set of stylistic options which go far beyt
the minimal functional needs of simple data storage. Therefore the YAML processor is required to intro
variouspresentation detaila’rhen creating the stream, such as the choice of node styles, how to format s
content, the amount of indentation, which tag handles to use, the node tags to leave unspecified, the
directives to provide and possibly even what comments to add. While some of this can be done with th
of the application, in general this process should be guided by the preferences of the user.

Loadingnative data structures from a character stream is done using the following three stages:

Parsing the
Presentation
Stream

Composing the
Representation
Graph

Constructing Nat-
ive Data Struc-
tures

Parsingis the inverse process of presentation, it takes a stream of characters and produces a series of
Parsing discards all the details introduced in the presentation process, reporting only the serialization e
Parsing can fail due to ill-formed input.

Composingakes a series of serialization events and produces a representation graph. Composing di
all the details introduced in the serialization process, producing only the representation graph. Comg
can fail due to any of several reasons, detailed below.

The final input process monstructingnative data structures from the YAML representation. Constructic
must be based only on the information available in the representation, and not on additional serializat
presentation details such as comments, directives, mapping key order, node styles, scalar content forr
dentation levels etc. Construction can fail due to the unavailability of the required native data types.

10

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

3.2. Information Models

This section specifies the formal details of the results of the above processes. To maximize data portability between progr
languages and implementations, users of YAML should be mindful of the distinction between serialization or presentatior
erties and those which are part of the YAML representation. Thus, while imposing a order on mapping keys is necessary
tening YAML representations to a sequential access medium, this serialization detail must not be used to convey applicati
information. In a similar manner, while indentation technique and a choice of a node style are needed for the human rea
these presentation details are neither part of the YAML serialization nor the YAML representation. By carefully separating
erties needed for serialization and presentation, YAML representations of application information will be consistent and pt

between various programming environments.

The following diagram summarizes the thirfermation modeld-ull arrows denote composition, hollow arrows denote inheritanc
“1”and *” denote “one” and “many” relationships. A singlg’‘denotes serialization details, a doubte-" denotes presentation

detalils.
Figure 3.2. Information Models
E Legend :
E YAML Representation :
i+ YAML Serialization ; Ta
1 ++ YAML Presentation : 9 ++ Non-Specific Tag
AL Name <
Kind
Scalar Tag
++ Directive 1
Canonical Format
Name
Parameters *
Key
Node 1
<
P+ Anchor * Key: Value Pair [€—
* . *
++ Style, Spacing, [€—
Line Wrapping... 1
Ordered Value Unordered
/ + Ordered
Content
Content

Sequence Node

Scalar Node

T
Canonical

/ ++ Formatted
Content

+ Alias Node

String

Mapping Node

++ Comment

11

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

3.2.1. Representation Graph

YAML’s representatiorof native data structure is a rooted, connected, directed graph of tagged nodes. By “directed grar
mean a set of nodes and directed edges (“arrows”), where each edge connects one node to another (see a formal defin
the nodes must be reachable fromrb@& nodevia such edges. Note that the YAML graph may include cycles, and a node r
have more than one incoming edge.

Nodes that are defined in terms of other nodes are collections; nodes that are independent of any other nodes are scalal

supports two kinds of collection nodes: sequences and mappings. Mapping nodes are somewhat tricky because their key
ordered and must be unique.

Figure 3.3. Representation Model

Tag

Name
Kind
Scalar Tag

Canonical Format

Key
Node 1
! * Key: Value Pair 4*7
<«
1
Ordered Value Unordered
Content Content
Sequence Node Scalar Node Mapping Node 1
Canonical
Content
String

3.2.1.1. Nodes

A YAML noderepresents a single native data structure. Such nodesdrdeatof one of thre&inds scalar, sequence, or mapping.
In addition, each node has a tag which serves to restrict the set of possible values the content can have.

Scalar The content of acalarnode is an opaque datum that can be presented as a series of zero or more Unicode cha

Sequence The content of @equenceode is an ordered series of zero or more nodes. In particular, a sequence may cc
the same node more than once. It could even contain itself (directly or indirectly).

Mapping The content of anappingnode is an unordered setkafy: valuenodepairs, with the restriction that each of the keys
is unique. YAML places no further restrictions on the nodes. In particular, keys may be arbitrary nodes, the
node may be used as the value of several key: value pairs, and a mapping could even contain itself as a key o
(directly or indirectly).

12

http://www.nist.gov/dads/HTML/directedGraph.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

When appropriate, it is convenient to consider sequences and mappings togettiectams In this view, sequences are treated
as mappings with integer keys starting at zero. Having a unified collections view for sequences and mappings is helpful |
theoretical analysis and for creating practical YAML tools and APIs. This strategy is also used by the Javascript progra
language.

3.2.1.2. Tags

YAML represents type information of native data structures with a simple identifier, cédlgdobal tagsare URIs and hence
globally unique across all applications. Thad: " URI scheme is recommended for all global YAML tags. In contiassl
tagsare specific to a single application. Local tags startfith, are not URIs and are not expected to be globally unique. YAM
provides a TAG directive to make tag notation less verbose; it also offers easy migration from local to global tags. To e
this, local tags are restricted to the URI character set and use URI character escaping.

YAML does not mandate any special relationship between different tags that begin with the same substring. Tags endi
URI fragments (containing?”) are no exception; tags that share the same base URI but differ in their fragment part are cons
to be different, independent tags. By convention, fragments are used to identify different “variants” of a tag,’ wehileed to
define nested tag “namespace” hierarchies. However, this is merely a convention, and each tag may employ its own rt
example, Perl tags may use ' to express namespace hierarchies, Java tags may 'Yssc.

YAML tags are used to associate meta information with each node. In particular, each tag must specify the expected nc
(scalar, sequence, or mapping). Scalar tags must also provide a mechanism for converting formatted content to a canon
for supporting equality testing. Furthermore, a tag may provide additional information such as the set of allowed content
for validation, a mechanism for tag resolution, or any other data that is applicable to all of the tag’s nodes.

3.2.1.3. Node Comparison

Since YAML mappings require key uniqueness, representations must include a mechanism for testing the equality of nod
is non-trivial since YAML allows various ways to format scalar content. For example, the integer eleven can be WiitEh'as “
(octal) or ‘0xB” (hexadecimal). If both notations are used as keys in the same mapping, only a YAML processor which reco
integer formats would correctly flag the duplicate key as an error.

Canonical Form YAML supports the need for scalar equality by requiring that eseajartag must specify a mechanism for
producing thecanonical formof any formatted content. This form is a Unicode character string which al
presents the same content, and can be used for equality testing. While this requirement is stronger thai
defined equality operator, it has other uses, such as the production of digital signatures.

Equality Two nodes must have the same tag and contentequed Since each tag applies to exactly one kind, thi:
implies that the two nodes must have the same kind to be equal. Two scalars are equal only when the
and canonical forms are equal character-by-character. Equality of collections is defined recursively. Tv
guences are equal only when they have the same tag and length, and each node in one sequence is
the corresponding node in the other sequence. Two mappings are equal only when they have the sé
and an equal set of keys, and each key in this set is associated with equal values in both mappings.

Different URI schemes may define different rules for testing the equality of URIs. Since a YAML proce:
cannot be reasonably expected to be aware of them all, it must resort to a simple character-by-ch:
comparison of tags to ensure consistency. This also happens to be the comparison method defined
“tag: ” URI scheme. Tags in a YAML stream must therefore be presented in a canonical way so that
comparison would yield the correct results.

Identity Two nodes aralenticalonly when they represent the same native data structure. Typically, this correspc
to a single memory address. Identity should not be confused with equality; two equal nodes need no
the same identity. A YAML processor may treat equal scalars as if they were identical. In contrast, the se
identity of two distinct but equal collections must be preserved.

13

http://www.ietf.org/rfc/rfc2396.txt
http://www.faqs.org/rfcs/rfc4151.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

3.2.2. Serialization Tree

To express a YAML representation using a serial AP, it is necessary to impose an order on mapping keys and employ ali:
to indicate a subsequent occurrence of a previously encountered node. The result of this preeestiziateon treewhere each
node has an ordered set of children. This tree can be traversed for a serial event-based API. Construction of native data
from the serial interface should not use key order or anchor names for the preservation of application data.

Figure 3.4. Serialization Model

E YAML Representation E
+ YAML Serialization

Tag

Name
Kind
Scalar Tag

Canonical Format

*

Key
Node 1
<
! + Anchor * Key: Value Pair <T
<
1
Ordered Value + Ordered
Content Content
Sequence Node ‘ ‘ Scalar Node ‘ ‘ Mapping Node
Canonical
Content
+ Alias Node
String

3.2.2.1. Keys Order

In the representation model, mapping keys do not have an order. To serialize a mapping, it is necessary tooirdeosg @m

its keys. This order is a serialization detail and should not be used when composing the representation graph (and henc
preservation of application data). In every case where node order is significant, a sequence must be used. For example, a
mapping can be represented as a sequence of mappings, where each mappinglswg sialyle pair. YAML provides convenient
compact notation for this case.

3.2.2.2. Anchors and Aliases

In the representation graph, a node may appear in more than one collection. When serializing such data, the first occur
the node isdentifiedby ananchor Each subsequent occurrence is serialized as an alias node which refers back to this a
Otherwise, anchor names are a serialization detail and are discarded once composing is completed. When composing a |
ation graph from serialized events, an alias node refers to the most recent node in the serialization having the specifiec
Therefore, anchors need not be unique within a serialization. In addition, an anchor need not have an alias node referrin
is therefore possible to provide an anchor for all nodes in serialization.

14

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

3.2.3. Presentation Stream

A YAML presentationis a stream of Unicode characters making use of of styles, scalar content formats, comments, dire
and other presentation details to present a YAML serialization in a human readable way. Although a YAML processor may |
these details when parsing, they should not be reflected in the resulting serialization. YAML allows several serialization t
be contained in the same YAML character stream, as a series of documents separated by markers. Documents appeal
same stream are independent; that is, a node must not appear in more than one serialization tree or representation grap

Figure 3.5. Presentation Model

+ YAML Serialization
++ YAML Presentation

E YAML Representation

Tag

++ Directive

Name j
Kind

Name
Parameters

*

++ Non-Specific Tag

Ordered
Content

Node
<
+ Anchor *
++ Style, Spacing, [€—

Line Wrapping..

Key
1

Key: Value Pair

1

Value

Sequence Node

Scalar Node

+ Alias Node

++ Formatted
Content

String

+ Ordered
Content

Mapping Node

++ Comment

15

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

3.2.3.1. Node Styles

Each node is presented in sostgle depending on its kind. The node style is a presentation detail and is not reflected ir
serialization tree or representation graph. There are two groups of styles. Block styles use indentation to denote structure; In
flow styles styles rely on explicit indicators.

YAML provides a rich set cfcalar stylesBlock scalar styles include the literal style and the folded style. Flow scalar styles incl
the plain style and two quoted styles, the single-quoted style and the double-quoted style. These styles offer a range of ti
between expressive power and readability.

Normally, block sequences and mappings begin on the next line. In some cases, YAML also allows nested block collec
start in-line for a more compact notation. In addition, YAML provides a compact notation for flow mappings withlegingdue
pair, nested inside a flow sequence. These allow for a natural “ordered mapping” notation.

Figure 3.6. Kind/Style Combinations

Kind
Collection
Scalar Sequence Mapping

o] (o) () (o

Flow i T—‘ ! v !
i Double Single ; i i i i
| Literal i 3 H

Block : i 3 i

i)
(i)

Folded ¥ ¥

3.2.3.2. Scalar Formats

YAML allows scalars to be presented in sevéoaiats For example, the integel1” might also be written asOkB”. Tags
must specify a mechanism for converting the formatted content to a canonical form for use in equality testing. Like nod
the format is a presentation detail and is not reflected in the serialization tree and representation graph.

3.2.3.3. Comments

Comments are a presentation detail and must not have any effect on the serialization tree or representation graph. In p
comments are not associated with a particular node. The usual purpose of a comment is to communicate between th
maintainers of a file. A typical example is comments in a configuration file. Comments must not appear inside scalars, b
be interleaved with such scalars inside collections.

3.2.3.4. Directives

Each document may be associated with a set of directives. A directive has a name and an optional sequence of parameters.
are instructions to the YAML processor, and like all other presentation details are not reflected in the YAML serialization t
representation graph. This version of YAML defines a two directine8ML” and “TAG. All other directives are reserved for
future versions of YAML.

16

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

3.3. Loading Failure Points

The process of loading native data structures from a YAML stream has several piatéumggboints The character stream may
be ill-formed, aliases may be unidentified, unspecified tags may be unresolvable, tags may be unrecognized, the conten
invalid, and a native type may be unavailable. Each of these failures results with an incomplete loading.

A partial representatiomeed not resolve the tag of each node, and the canonical form of formatted scalar content need
available. This weaker representation is useful for cases of incomplete knowledge of the types used in the document. In:
acomplete representatiospecifies the tag of each node, and provides the canonical form of formatted scalar content, all
for equality testing. A complete representation is required in order to construct native data structures.

Figure 3.7. Loading Failure Points

A
VAY
< »
| {)
Parse é #
l Well Formed I||-F9rme.d. No
and Identified or Unidentified Representation
83
Compose : ¢
Resolved Unresolved Partial .
Representation
?
Scalar
RECOQNiZ_Ed Unrecognized
and Valid or Invalid
v
* ? Collection
Available Unavailable Complete.
Representation
Construct

Construct
Native Data

3.3.1. Well-Formed Streams and ldentified Aliases

A well-formed character stream must match the BNF productions specified in the following chapters. Successful loading also |
that each alias shall refer to a previous node identified by the anchor. A YAML processor shouili-H@jestd streamsand
unidentified aliasesA YAML processor may recover from syntax errors, possibly by ignoring certain parts of the input, b
must provide a mechanism for reporting such errors.

17

http://www.w3.org/Style/XSL
http://www.renderx.com/

Processing YAML Information

3.3.2.

3.3.3.

3.3.4.

Resolved Tags

Typically, most tags are not explicitly specified in the character stream. During parsing, nodes lacking an explicit tag are «
non-specific tag*! ” for non-plain scalars, ari®®” for all other nodes. Composing a complete representation requires each ¢
non-specific tag to beesolvedto aspecific tagbe it a global tag or a local tag.

Resolving the tag of a node must only depend on the following three parameters: (1) the non-specific tag of the node, (2)
leading from the root to the node, and (3) the content (and hence the kind) of the node. When a node has more than one o
(using aliases), tag resolution must depend only on the path to the first (anchored) occurrence of the node.

Note that resolution must not consider presentation details such as comments, indentation and node style. Also, resolut
not consider the content of any other node, except for the content of the key nodes directly along the path leading from
to the resolved node. Finally, resolution must not consider the content of a sibling node in a collection, or the content of th
node associated with a key node being resolved.

These rules ensure that tag resolution can be performed as soon as a node is first encountered in the stream, typically
content is parsed. Also, tag resolution only requires referring to a relatively small number of previously parsed nodes. T
most cases, tag resolution in one-pass processors is both possible and practical.

YAML processors should resolve nodes having the” “non-specific tag as tag:yaml.org,2002:seq
“tag:yaml.org,2002:map " or “tag:yaml.org,2002:str " depending on their kind. Thigg resolution convention
allows the author of a YAML character stream to effectively “disable” the tag resolution process. By explicitly specifyling :
non-specific tag property, the node would then be resolved to a “vanilla” sequence, mapping, or string, according to its ki

Application specific tag resolution rules should be restricted to resolvingtheh-specific tag, most commonly to resolving
plain scalars. These may be matched against a set of regular expressions to provide automatic resolution of integer
timestamps, and similar types. An application may also match the content of mapping nodes against sets of expected
automatically resolve points, complex numbers, and similar types. Resolved sequence node types such as the “ordered 1
are also possible.

That said, tag resolution is specific to the application. YAML processors should therefore provide a mechanism allowing
plication to override and expand these default tag resolution rules.

If a document containsnresolved tagshe YAML processor is unable to compose a complete representation graph. In su
case, the YAML processor may compose a partial representation, based on each node’s kind and allowing for non-speci

Recognized and Valid Tags

To bevalid, a node must have a tag whichdgsognizedy the YAML processor and its content must satisfy the constraints impos
by this tag. If a document contains a scalar node witiagcognized tagrinvalid contentonly a partial representation may be
composed. In contrast, a YAML processor can always compose a complete representation for an unrecognized or an inv
lection, since collection equality does not depend upon knowledge of the collection’s data type. However, such a complete
entation cannot be used to construct a native data structure.

Available Tags

In a given processing environment, there need not lbwaitablenative type corresponding to a given tag. If a node’s tag-is
available a YAML processor will not be able to construct a native data structure for it. In this case, a complete represel
may still be composed, and an application may wish to use this representation directly.

18

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 4. Syntax Conventions

The following chapters formally define the syntax of YAML character streams, using parameterized BNF productions. Eac
production is both named and numbered for easy reference. Whenever possible, basic structures are specified before
complex structures using them in a “bottom up” fashion.

The order of alternatives inside a production is significant. Subsequent alternatives are only considered when previous or
See for example the-break production. In addition, production matching is expected to be greedy. Opfdredio-or-more
(*) and one-or-moreH) patterns are always expected to match as much of the input as possible.

The productions are accompanied by examples, which are given side-by-side next to equivalent YAML text in an expls
format. This format uses only flow collections, double-quoted scalars, and explicit tags for each node.

A reference implementation using the productions is available as the YamIReference Haskell package. This reference img
ation is also available as an interactive web application at http://dev.yaml.org/ypaste.

4.1. Production Parameters

YAML'’s syntax is designed for maximal human readability. This requires parsing to depend on the surrounding text. For not
compactness, this dependency is expressed using parameterized BNF productions.

This context sensitivity is the cause of most of the complexity of the YAML syntax definition. It is further complicated by strug
with the human tendency to look ahead when interpreting text. These complications are of course the source of most of Y
power to present data in a very human readable way.

Productions use any of the following parameters:

Indentationn orm Many productions use an explicit indentation level parameter. This is less elegant than Python’s “in
and “undent” conceptual tokens. However it is required to formally express YAML'’s indentation rul

Context:c This parameter allows productions to tweak their behavior according to their surrounding. YAML supy
two groups ofontextsdistinguishing between block styles and flow styles.

In block styles, indentation is used to delineate structure. To capture human perception of inden
the rules require special treatment of thé ¢haracter, used in block sequences. Hence in some ca:
productions need to behave differently inside block sequebloek{in contextand outside thenblock-
out context

In flow styles, explicit indicators are used to delineate structure. These styles can be viewed as the 1
extension of JSON to cover tagged, single-quoted and plain scalars. Since the latter have no delir
indicators, they are subject to some restrictions to avoid ambiguities. These restrictions depend on
they appear: as implicit keys directly inside a block mappitack-key; as implicit keys inside a flow
mapping flow-key); as values inside a flow collectiofiofv-in); or as values outside orféo(v-ou.

(Block) Chompingt Block scalars offer three possible mechanisms for chomping any trailing line breaks: strip, clip and |
Unlike the previous parameters, this only controls interpretation; the line breaks are valid in all cas

19

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/YamlReference
http://dev.yaml.org/ypaste
http://www.w3.org/Style/XSL
http://www.renderx.com/

Syntax Conventions

4.2. Production Naming Conventions

To make it easier to follow production combinations, production names use a Hungarian-style naming convention. Each pro
is given a prefix based on the type of characters it begins and ends with.

e- A production matching no characters.

c- A production starting and ending with a special character.

b- A production matching a single line break.

nb- A production starting and ending with a non-break character.
S- A production starting and ending with a white space character.
ns- A production starting and ending with a non-space character.

I- A production matching complete line(s).

X- Y- A production starting with aK- character and ending withya character, wher®- andY- are any of the
above prefixes.

X+, X- Y+ A production as above, with the additional property that the matched content indentation level is greate
the specifiech parameter.

20

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 5. Characters
5.1. Character Set

To ensure readability, YAML streams use only phimtable subset of the Unicode character set. The allowed character rar
explicitly excludes the CO control blogk0-#x1F (except for TAB#x9, LF #xA, and CR¢xD which are allowed), DEEX7F ,

the C1 control blockéx80-#x9F (except for NEL#x85 which is allowed), the surrogate blogkD800-#xXDFFF , #xFFFE,
and#xFFFF.

On input, a YAML processor must accept all Unicode characters except those explicitly excluded above.

On output, a YAML processor must only produce acceptable characters. Any excluded characters must be presented usir
sequences. In addition, any allowed characters known to be non-printable should also be escaped. This isn't mandator
full implementation would require extensive character property tables.

[1] c-printable ::= #x9 | #xA | #xD | [#x20-#x7E] [* 8 bit */
| #x85 | [#xAO0-#xD7FF] | [#xEQ00-#xFFFD] /* 16 bit */
| [#x10000-#x10FFFF] [* 32 bit */

To ensure JSON compatibility, YAML processors must allow all non-control characters inside quoted scalars. To ensure |
ility, non-printable characters should be escaped on output, even inside such scalars. Note that JSON quoted scalars ca
multiple lines or contain tabs, but YAML quoted scalars can.

2] nb-json ::= #x9 | [#x20-#x10FFFF]

5.2. Character Encodings

All characters mentioned in this specification are Unicode code points. Each such code point is written as one or more b
pending on theharacter encodingsed. Note that in UTF-16, characters abbifeFFF are written as four bytes, using a surrogate
pair.

The character encoding is a presentation detail and must not be used to convey content information.

On input, a YAML processor must support the UTF-8 and UTF-16 character encodings. For JSON compatibility, the U
encodings must also be supported.

If a character stream begins wittvyte order markthe character encoding will be taken to be as as indicated by the byte ol
mark. Otherwise, the stream must begin with an ASCII character. This allows the encoding to be deduced by the patterr
(#x00) characters.

To make it easier to concatenate streams, byte order marks may appear at the start of any document. However all doct
the same stream must use the same character encoding.

To allow for JISON compatibility, byte order marks are also allowed inside quoted scalars. For readability, such content byt
marks should be escaped on output.

21

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

The encoding can therefore be deduced by matching the first few bytes of the stream with the following table rows (in orc

ByteO Bytel Byte2 Byte3 Encoding

Explicit BOM #x00 #x00 #xFE #xFF UTF-32BE
ASCI| first character #x00 #x00 #x00 any UTF-32BE
Explicit BOM #xFF #XFE #x00 #x00 UTF-32LE
ASCII first character any #x00 #x00 #x00 UTF-32LE
Explicit BOM #XFE #xFF UTF-16BE
ASCII first character #x00 any UTF-16BE
Explicit BOM #XFF #XFE UTF-16LE
ASCII first character any #x00 UTF-16LE
Explicit BOM #XEF #xBB #xBF UTF-8

Default UTF-8

The recommended output encoding is UTF-8. If another encoding is used, it is recommended that an explicit byte order |
used, even if the first stream character is ASCII.

For more information about the byte order mark and the Unicode character encoding schemes see the Unicode FAQ.
[3] c-byte-order-mark ::= #xFEFF

In the examples, byte order mark characters are displayed’'as “

Example 5.1. Byte Order Mark

E# Comment only. This stream contains no
documents, only comments.

Legend:
[c-byte-order-mark |

Example 5.2. Invalid Byte Order Mark

- Invalid use of BOM ERROR:
A BOM |must not appear
- Inside a document. inside a document.

5.3. Indicator Characters

Indicatorsare characters that have special semantics.

[4] c-sequence-entry = *-" A “-" (#x2D, hyphen) denotes a block sequence entry.
[5] c-mapping-key ::= “?” A “?” (#x3F, question mark) denotes a mapping key.
[6] c-mapping-value ::= " A*“: " (#x3A, colon) denotes a mapping value.

22

http://www.unicode.org/unicode/faq/utf_bom.html
http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

Example 5.3. Block Structure Indicators

r=i

sequence ;

L-J
Done
B
. I_'_'I
mapping { |
1?2 i sky
i1 blue
oy
sea : green

DOYAML 1.2
IImap {
? llstr "sequence”
: llseq [!str "one", !lstr "two"],
? lstr "mapping"
:Imap {
? Ustr "sky" : lstr "blue”,
? lstr "sea" : !lstr "green”,

Legend:
[C-Sequence-entry |

[7] c-collect-entry ::= “"
(8] c-sequence-start ::= “[’
[l c-sequence-end = “]"
[10] c-mapping-start ::= “{"

[11] c-mapping-end ::= "}’

Example 5.4. Flow Collection Indicators

2

}

A*“, " (#x2C, comma) ends a flow collection entry.
A“[" (#x5B, left bracket) starts a flow sequence.

A“] " (#x5D, right bracket) ends a flow sequence.
A“{" (#x7B, left brace) starts a flow mapping.

A “}" (#x7D, right brace) ends a flow mapping.

sequence: [_, woy 11 i]

mapping: { isky: blue , seaigreen }

CAYAML 1.2

Legend:
[c-Sequence-start_c-sgfuence-end

[12] c-comment ;;= “#”

Example 5.5. Comment Indicator

I'map {
? lstr "sequence”
: llseq [!Istr "one", llstr "two"],
? llstr "mapping"
: 'map {
? llstr "sky" : llstr "blue”,
? llstr "sea" : llstr "green”,

12

}

An “#” (#x23, octothorpe, hash, sharp, pound, number sign

denotes a comment.

Comment only. This stream contains no
documents, only comments.
Legend:

23

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

[13] c-anchor ::="&” An “&” (#x26 , ampersand) denotes a node’s anchor property.
[14] c-alias ::="*" An “*” (#x2A, asterisk) denotes an alias node.
[15] c-tag ::="“I" The " " (#x21 , exclamation) is heavily overloaded for specifying

node tags. It is used to denote tag handles used in tag directi
and tag properties; to denote local tags; and as the non-spec
tag for non-plain scalars.

Example 5.6. Node Property Indicators

anchored: !lpcal & anchor value DAYAML 1.2
alias: * anchor
== I'map {
Legend: ? lstr "anchored"”
- sancHGr Eealias - : llocal &A1 "value"
g_k-anchor c-alias] ,
""""""""" s - - ? listr "alias"
T *AlL,
}
[16] c-literal ::=“|" A“| " (7C, vertical bar) denotes a literal block scalar.
[17] c-folded ::= *>" A “>" (#x3E, greater than) denotes a folded block scalar.
Example 5.7. Block Scalar Indicators
literal: | [] PDOYAML 1.2
some
text IImap {
folded: > | ¢ ? lstr "literal"
somé L : lstr "some\ntext\n",
text ? Ustr "folded"
. llstr "some text\n",
Legend: }

[18] c-single-quote ::= An “' " (#x27, apostrophe, single quote) surrounds a single
guoted flow scalar.

[19] c-double-quote ::= A “"" (#x22, double quote) surrounds a double-quoted flow
scalar.

Example 5.8. Quoted Scalar Indicators

single: ' tekt | [] DOYAML 1.2
double: "text" i

I'map {
'| n H "
Legend: ?I;.sttr"tant.gl;le
c-single-quote c-dpuble-guote - =Strtext’,
| ge-d oubre: QU ? llstr "double”
: lstr "text",

}

24

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

[20] c-directive ::= “%” A “9% (#x25, percent) denotes a directive line.

Example 5.9. Directive Indicator

YAML 1.2 DOYAML 1.2
-~ text
lstr "text"
Legend:
[21] c-reserved ::="@" | " The" @ (#x40, at) and' ™" (#x60 , grave accent) areserved

for future use.

Example 5.10. Invalid use of Reserved Indicators

commercial-at: @ téxt] ERROR:
grave-accent: ° te |Reserved indicators can't
start a plain scalar.

Any indicator character:

[22] c-indicator ::= “" | “?" 1“1 1" 17" 1" | Y
R AR R b
"% | '@ | ™
The T", “17 “{" “}"and “ " indicators denote structure in flow collections. They are therefore forbidden in some case
avoid ambiguity in several constructs. This is handled on a case-by-case basis by the relevant productions.

[23] c-flow-indicator ::= “" | “[" | “]" | “{" | “}"

5.4. Line Break Characters

YAML recognizes the following ASClline breakcharacters.

[24] b-line-feed ::= #xA [*LF*/
[25] b-carriage-return ::= #xD [* CR */
[26] b-char ::= b-line-feed | b-carriage-return

All other characters, including the form feék@C), are considered to be non-break characters. Note that these inclada-the
ASCII line breaksnext line ¢x85), line separator#x2028) and paragraph separatéx2029).

YAML version 1.1 did support the above non-ASCII line break characters; however, JSON does not. Hence, to ensure
compatibility, YAML treats them as non-break characters as of version 1.2. In theory this would cause incompatibility with vi
1.1; in practice these characters were rarely (if ever) used. YAML 1.2 processors parsing a version 1.1 document should t
treat these line breaks as non-break characters, with an appropriate warning.

[27] nb-char ::= c-printable - b-char - c-byte-order-mark
Line breaks are interpreted differently by different systems, and have several widely used formats.
[28] b-break ::= (b-carriage-return b-line-feed) /* DOS, Windows */

| b-carriage-return /* MacOS upto 9.x */
| b-line-feed /* UNIX, MacOS X */

25

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

Line breaks inside scalar content mushbemalizedby the YAML processor. Each such line break must be parsed into a sin
line feed character. The original line break format is a presentation detail and must not be used to convey content inform

[29] b-as-line-feed ::= b-break
Outside scalar content, YAML allows any line break to be used to terminate lines.
[30] b-non-content ::= b-break
On output, a YAML processor is free to emit line breaks using whatever convention is most appropriate.

In the examples, line breaks are sometimes displayed using’tigé/ph for clarity.

Example 5.11. Line Break Characters

| CAYAML 1.2
Line break (no glyph)
Line break (glyphed) ”Strli"rl:gi rl?erzlzjlz g(|r;(; r?eh(/j[;\hn)\n\

Legend:

5.5. White Space Characters

YAML recognizes twowhite spaceharactersspaceandtab.
[31] s-space ::= #x20 /* SP */
[32] s-tab ;= #x9 /* TAB */
[33] s-white ;= s-space | s-tab
The rest of the (printable) non-break characters are considered to be non-space characters.

[34] ns-char ::= nb-char - s-white

In the examples, tab characters are displayed as the glyphSpace characters are sometimes displayed as the glypbor*
clarity.

Example 5.12. Tabs and Spaces

Tabs and spaces DAYAML 1.2
quoted: - 'Quoted P
block: {51 I'map {
R ? lstr "quoted”
Eq!(_j“mam() { : "Quoted \t",
:[— printf("Hello, world!\n"); 2 1istr "block”
T}‘ : "void main() {\n\
\tprintf(\"Hello, world\\n\");\n\
Legend: J Al
[S-space Jsitalb h

26

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

5.6. Miscellaneous Characters

The YAML syntax productions make use of the following additional character classes:

A decimal digit for numbers:
[35] ns-dec-digit ::= [#x30-#x39] /* 0-9 */
A hexadecimal digit for escape sequences:

[36] ns-hex-digit ::= ns-dec-digit
| [#x41-#x46] I* A-F */ | [#x61-#x66] I* a-f */

ASCI! letter (alphabetic) characters:

[37] ns-ascii-letter ::= [#x41-#x5A] /* A-Z */ | [#x61-#xTA] I* a-z */
Word (alphanumeric) characters for identifiers:

[38] ns-word-char ::= ns-dec-digit | ns-ascii-letter | “-”

URI characters for tags, as specified in RFC2396, with the addition ¢f'thed “] ” for presenting IPv6 addresses as propose
in RFC2732.

By convention, any URI characters other than the allowed printable ASCII characters anefidgtdn UTF-8, and then each
byte isescapedising the' % character. The YAML processor must not expand such escaped characters. Tag character
be preserved and compared exactly as presented in the YAML stream, without any processing.

[39] ns-uri-char ::= “%" ns-hex-digit ns-hex-digit | ns-word-char | “#"
e R b e e R R
TP Y T

The “1 " character is used to indicate the end of a named tag handle; hence its use in tag shorthands is restricted. In

such shorthands must not contain thg “] ", “{”, “} " and “, " characters. These characters would cause ambiguity with flo
collection structures.

[40] ns-tag-char ::= ns-uri-char - “1" - c-flow-indicator

27

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

5.7. Escaped Characters

All non-printable characters must bscapedYAML escape sequences use thé notation common to most modern computer
languages. Each escape sequence must be parsed into the appropriate Unicode character. The original escape sec
presentation detail and must not be used to convey content information.

Note that escape sequences are only interpreted in double-quoted scalars. In all other scalar §tyldsathetér has no special

meaning and non-printable characters are not available.

[41] c-escape ;="\

YAML escape sequences are a superset of C's escape sequences:

[42]
[43]
[44]

[45]

[46]
[47]
[48]
[49]
[50]
[51]

[52]
[53]
[54]
[55]
[56]
[57]
[58]

[59]

[60]

[61]

ns-esc-null ::= “0”
ns-esc-bell ::= “a”

ns-esc-backspace ::=“b

ns-esc-horizontal-tab ::= “t” | #x9

[1s]

ns-esc-line-feed ::=“n

ns-esc-vertical-tab ;= “v’

ns-esc-form-feed ::= “f”

|
=

ns-esc-carriage-retu n:=

ns-esc-escape ::= “e

ns-esc-space ::= #x20

ns-esc-double-quote ::=
ns-esc-slash ::=“/"

ns-esc-backslash ;= “V

ns-esc-next-line ::= “N”
ns-esc-non-breaking-space ::=*_”
ns-esc-line-separator ::= “L”

ns-esc-paragraph-separator ::= “P”

ns-esc-8-bit ::= “x”
(ns-hex-digit x 2)

ns-esc-16-bit ::= “u
(ns-hex-digit x 4)

ns-esc-32-bit ::= “U”
(ns-hex-digit x 8)

Escaped ASCII null#x0) character.
Escaped ASCII bell#x7) character.
Escaped ASCII backspaceéx@) character.

Escaped ASCII horizontal ta#X9) character. This is useful at
the start or the end of a line to force a leading or trailing tab t
become part of the content.

Escaped ASCI!I line feedXA) character.
Escaped ASCII vertical ta#XB) character.
Escaped ASCII form feedXC) character.
Escaped ASCII carriage returx) character.
Escaped ASCII escap#x1B) character.

Escaped ASCII spac#x20) character. This is useful at the start
or the end of a line to force a leading or trailing space to becon
part of the content.

Escaped ASCII double quotéx@?).

Escaped ASCII slashX2F), for JSON compatibility.
Escaped ASCII back slastix6C).

Escaped Unicode next lin#x85) character.

Escaped Unicode non-breaking spabedQ) character.
Escaped Unicode line separat®xZ028) character.
Escaped Unicode paragraph separatw2@29) character.

Escaped 8-bit Unicode character.

Escaped 16-bit Unicode character.

Escaped 32-bit Unicode character.

28

http://www.w3.org/Style/XSL
http://www.renderx.com/

Characters

Any escaped character;

[62] c-ns-esc-char ::= “\"

(ns-esc-null | ns-esc-bell | ns-esc-backspace

| ns-esc-horizontal-tab | ns-esc-line-feed

| ns-esc-vertical-tab | ns-esc-form-feed

| ns-esc-carriage-return | ns-esc-escape | hs-esc-space
| ns-esc-double-quote | ns-esc-slash | ns-esc-backslash
| ns-esc-next-line | ns-esc-non-breaking-space

| ns-esc-line-separator | ns-esc-paragraph-separator

| ns-esc-8-bit | ns-esc-16-bit | ns-esc-32-hit)

Example 5.13. Escaped Characters

"Eun with \\ D

Ve M B[V
n] MW O] V][]
LW LW [[

41 |fu0041 {U00000041 " |

POYAML 1.2

'Fun with \x5C

x22 \x07 \x08 \x1B \x0C

X0A \x0D \x09 \x0B \x00

x20 \xAO0 \x85 \u2028 \u2029

Legend:
[c-ns-esc-char |

Example 5.14. Invalid Escaped Characters

AAA"

Bad escapes:

.......

ERROR:
- ¢ i5 an invalid escaped character.
- g and - are invalid hex digits.

29

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 6. Basic Structures

6.1. Indentation Spaces

In YAML block styles, structure is determinedibgentation In general, indentation is defined as a zero or more space charac
at the start of a line.

To maintain portability, tab characters must not be used in indentation, since different systems treat tabs differently. Nt
most modern editors may be configured so that pressing the tab key results in the insertion of an appropriate number of

The amount of indentation is a presentation detail and must not be used to convey content information.
[63] s-indent(n) ::= s-space x n

A block style construct is terminated when encountering a line which is less indented than the construct. The productions
notation ‘s-indent(<n) "and “s-indent(<n) ” to express this.

[64] s-indent(<n) ::= s-space x m /* Where m < n */
[65] s-indent(<n) ::= s-space x m /* Where m <n?*

Each node must be indented further than its parent node. All sibling nodes must use the exact same indentation level. |
the content of each sibling node may be further indented independently.

Example 6.1. Indentation Spaces

|- # Leading comment line spaces are POYAML 1.2

| --- #ineither content nor indentation. [~

Fae t'map {

Lol ? listr "Not indented"
Not indented: :map {

|- By one space: | ? llstr "By one space"

.. By four : listr "By four\n spaces\n”,
[—spaces it
EﬁfIO_N style: [# Leading spaces sty "By two",

- |Bytwo, #inflow style listr "Also by two",
- Elso by two, # are neither lstr "Still by two",
-+ |- Still by two # content nor }]

- ¥l # indentation. \

Legend:

S-indent(n) Cgntent

Neither content nor indentation ~~ """~~~}

The ", “?"and “; " characters used to denote block collection entries are perceived by people to be part of the indentatiol

is handled on a case-by-case basis by the relevant productions.

30

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

Example 6.2. Indentation Indicators

DOYAML 1.2
IImap {
? lstr "a"
lseq [
lstr "b",
Legend: llseq [!str "c", str "d"]
[Tofal Tndentation | 1
s-indent(n). - Indi¢afor as indentation” ~~ """ """ }

6.2. Separation Spaces

Outside indentation and scalar content, YAML uses white space charactapdmationbetween tokens within a line. Note that
such white space may safely include tab characters.

Separation spaces are a presentation detail and must not be used to convey content information.

[66] s-separate-in-line ::= s-white+ | /* Start of line */

Example 6.3. Separation Spaces

[[To: [~ bar PAYAML 1.2

B @Z ;!;eq [
) baz IImap {

? llstr "foo" : lstr "bar",

Legend: }
G-separate-in-line '

llseq [llstr "baz", !!str "baz"],

|

6.3. Line Prefixes

Inside scalar content, each line begins with a non-colienprefix This prefix always includes the indentation. For flow scala
styles it additionally includes all leading white space, which may contain tab characters.

Line prefixes are a presentation detail and must not be used to convey content information.

[67] s-line-prefix(n,c) ::= ¢ = block-out O s-block-line-prefix(n)
¢ = block-in O s-block-line-prefix(n)
¢ = flow-out O s-flow-line-prefix(n)
¢ = flow-in O s-flow-line-prefix(n)

[68] s-block-line-prefix(n) ::= s-indent(n)
[69] s-flow-line-prefix(n) ::= s-indent(n) s-separate-in-line?

31

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

Example 6.4. Line Prefixes

plain: text DAYAML 1.2
&3 lines
quoted: "text !!?ﬁp{" o
TS Jiines” ..I;.str" plalq)
block: | : llstr "text lines",
ol ? llstr "quoted”
c_ext : Istr "text lines”,
t23: —lines 2 str "block”
: lstr "text\n- - lines\n",
}
Legend:
s-flow-Tine-prefix(n) _s-blockiline-prefix(n). s-indent(n) .- [_- """ "°"7]

6.4. Empty Lines

An empty lindline consists of the non-content prefix followed by a line break.

[70] [-empty(n,c) ::= (s-line-prefix(n,c) | s-indent(<n))
b-as-line-feed

The semantics of empty lines depend on the scalar style they appear in. This is handled on a case-by-case basis by th
productions.

Example 6.5. Empty Lines

Folding: PAYAML 1.2
"Empty line
- I'map {
as a line feed" ? llstr "Folding"
Chomping: | : lstr "Empty Ii_ne\nas a line feed",
Clipped empty lines ? llstr "Chomping”
: lstr "Clipped empty lines\n",
L
U

Legend:
[-empty(n,C) |

6.5. Line Folding

Line foldingallows long lines to be broken for readability, while retaining the semantics of the original long line. If a line b
is followed by an empty line, it isimmed the first line break is discarded and the rest are retained as content.

[71] b-I-trimmed(n,c) ::= b-non-content |-empty(n,c)+

Otherwise (the following line is not empty), the line break is converted to a single #pa0e.(
[72] b-as-space ::= b-break

A folded non-empty line may end with either of the above line breaks.

[73] b-I-folded(n,c) ::= b-I-trimmed(n,c) | b-as-space

32

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

Example 6.6. Line Folding

>_
trimmed E
!

=

as il
space

DAYAML 1.2

IIstr "trimmed\n\n\nas space

Legend:
[b-I-tnmmed(n,C)

The above rules are common to both the folded block style and the scalar flow styles. Folding does distinguish betwee
cases in the following way:

Block Folding

In the folded block style, the final line break and trailing empty lines are subject to chomping, and are 1
folded. In addition, folding does not apply to line breaks surrounding text lines that contain leading w
space. Note that such a more-indented line may consist only of such leading white space.

The combined effect of thalock line foldingrules is that each “paragraph” is interpreted as a line, emp
lines are interpreted as a line feed, and the formatting of more-indented lines is preserved.

Example 6.7. Block Folding

COYAML 1.2
--- llstr
‘foo \n\n\t bar\n\nbaz\n"

Legend:
[b-I-folded(n,C) |

Folding in flow styles provides more relaxed semantics. Flow styles typically depend on explicit indice
rather than indentation to convey structure. Hence spaces preceding or following the text in a line
presentation detail and must not be used to convey content information. Once all such spaces have be

The combined effect of tHew line foldingrules is that each “paragraph” is interpreted as a line, empty lin
are interpreted as line feeds, and text can be freely more-indented without affecting the content inform

- baz |
Flow Folding
carded, all line breaks are folded, without exception.
[74] s-flow-folded(n) ::= s-separate-in-line? b-I-folded(n,flow-in)

s-flow-line-prefix(n)

Example 6.8. Flow Folding

COYAML 1.2
--- listr
' foo\nbar\nbaz "

Legend:
[s-Tlow-folded(n) |

33

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

6.6. Comments

An explicitcommenis marked by &#” indicator. Comments are a presentation detail and must not be used to convey col
information.

Comments must be separated from other tokens by white space characters. To ensure JSON compatibility, YAML prc
must allow for the omission of the final comment line break of the input stream. However, as this confuses many tools,
processors should terminate the stream with an explicit line break on output.

[75] c-nb-comment-text ::;= “#” nb-char*

[76] b-comment ::= b-non-content | /* End of file */

[77] s-b-comment ::= (s-separate-in-line c-nb-comment-text?)?
b-comment

Example 6.9. Separated Comment

key: ---# Cpmment . : PAYAML 1.2
value 1€of
— IImap {
Legend: ? llstr "key"
[C-b-comment-text_b-gaimiiert st “valuet,
S-b-Comment])

Outside scalar content, comments may appear on a line of their own, independent of the indentation level. Note that outsi
content, a line containing only white space characters is taken to be a comment line.

[78] [-comment ::= s-separate-in-line c-nb-comment-text? b-comment

Example 6.10. Comment Lines

H This stream contains no
H documents, only comments.

Legend:

In most cases, when a line may end with a comment, YAML allows it to be followed by additional comment lines. The on
ception is a comment ending a block scalar header.

[79] s-l-comments ::= (s-b-comment | /* Start of line */)
[-comment*

Example 6.11. Multi-Line Comments

COYAML 1.2
I'map {

? llstr "key"

: lstr "value",

I

Legend:
S-b-comment_|-¢comment s-I-comments”]

34

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

6.7. Separation Lines

Implicit keys are restricted to a single line. In all other cases, YAML allows tokens to be separated by multi-line (possibly €

comments.

Note that structures following multi-line comment separation must be properly indented, even though there is no such res

on the separation comment lines themselves.

[80] s-separate(n,c) ::= ¢ = block-out O s-separate-lines(n)
¢ = block-in O s-separate-lines(n)
¢ = flow-out O s-separate-lines(n)
¢ = flow-in 0 s-separate-lines(n)
¢ = block-key 0 s-separate-in-line
¢ = flow-key 0 s-separate-in-line

[81] s-separate-lines(n) ::= (s-I-comments s-flow-line-prefix(n))

| s-separate-in-line

Example 6.12. Separation Spaces

{rst: . Sa@w, . IasGSosa - D l

COYAML 1.2
I'map {
? Imap {
? lstr "first"
: lstr "Sammy",
? lstr "last"
: lIstr "Sosa",

Legend:

6.8. Directives

Directivesare instructions to the YAML processor. This specification defines two directivasJl* and “TAG, andreserves
all other directives for future use. There is no way to define private directives. This is intentional.

Directives are a presentation detail and must not be used to convey content information.

[82] [-directive ::= “%”
(ns-yaml-directive
| ns-tag-directive
| ns-reserved-directive)
s-I-comments

}
: 'map {

? lstr "hr"

: Hint "65",

? lstr "avg"

: 'float "0.278",
|3

}

35

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

6.8.1.

Each directive is specified on a separate non-indented line starting witt6thmicator, followed by the directive name and a
list of parameters. The semantics of these parameters depends on the specific directive. A YAML processor should ignore
directives with an appropriate warning.

[83] ns-reserved-directive ::= ns-directive-name

(s-separate-in-line ns-directive-parameter)*
[84] ns-directive-name ::= ns-char+
[85] ns-directive-parameter ::= ns-char+

Example 6.13. Reserved Directives

% FOO [bay [haz| # Should be ignored POYAML 1.2
with a warning. - Hstr
--- "foo” 'foo"
Legend:
ns-reserved-directive ns-directive-name . ns-directive-parameter. ~~ "~~~ """~~~ "7

“YAML Directives

The" YAM.” directive specifies the version of YAML the document conforms to. This specification defines vetrstof) in-
cluding recommendations f&fAML 1.1 processing

A version 1.2 YAML processor must accept documents with an exgoftAML 1.2” directive, as well as documents lacking
a “YAML directive. Such documents are assumed to conform to the 1.2 version specification. DocumeniéAditti difective

specifying a higher minor version (e.@YAML 1.3") should be processed with an appropriate warning. Documents with
“YAML directive specifying a higher major version (e.YAML 2.0") should be rejected with an appropriate error message

A version 1.2 YAML processor must also accept documents with an expi®iAML 1.1" directive. Note that version 1.2 is
mostly a superset of version 1.1, defined for the purpose of end@®i compatibilityHence a version 1.2 processor shoulc
process version 1.1 documents as if they were version 1.2, giving a warning on points of incompatibility (handling of non-
line breaks, as described above).

[86] ns-yaml-directive ::= “Y” “A” “M” “L”
s-separate-in-line ns-yaml-version

wn

[87] ns-yaml-version ::= ns-dec-digit+ “.” ns-dec-digit+

Example 6.14. YAML directive

CAYAML 1.2

I1str "foo"

Legend:

It is an error to specify more than onéAML directive for the same document, even if both occurrences give the same ver:
number.

Example 6.15. Invalid Repeated YAML directive

%YAML 1.2 ERROR:
0 1.1 The directive must only be
foo given at most once per document.

36

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

6.8.2. “TAG Directives

The" TAG’ directive establishes a tag shorthand notation for specifying node tags. Bs@hdirective associates a handle with
a prefix. This allows for compact and readable tag notation.

[88] ns-tag-directive ::= “T" “A” “G”

s-separate-in-line c-tag-handle
s-separate-in-line ns-tag-prefix

Example 6.16. TAG directive

o TAGIlyami!__tdg:yam.org,2002. _____| PoYAML 1.2
lyaml!str "foo" lstr "foo"
Legend:

ns-tag-directive_c-tag-handle ns-tag-prefix ~__~_ """

It is an error to specify more than onBAG directive for the same handle in the same document, even if both occurrences
the same prefix.

Example 6.17. Invalid Repeated TAG directive

%TAG ! Ifoo ERROR:

%TAGE Ifoo The TAG directive must only

bar be given at most once per
handle ih the same document.

6.8.2.1. Tag Handles

Thetag handleexactly matches the prefix of the affected tag shorthand. There are three tag handle variants:

[89] c-tag-handle ::= c-named-tag-handle
| c-secondary-tag-handle
| c-primary-tag-handle

Primary Handle Theprimary tag handlés a singlé'! ” character. This allows using the most compact possible notation
a single “primary” name space. By default, the prefix associated with this handle Ehtis, by default,
shorthands using this handle are interpreted as local tags.

It is possible to override the default behavior by providing an expliéiG' directive, associating a different
prefix for this handle. This provides smooth migration from using local tags to using global tags, by the si
addition of a single TAG directive.

[90] c-primary-tag-handle ::=

37

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

Example 6.18. Primary Tag Handle

Private COYAML 1.2
0 "bar"
@O I<!foo> "bar"
Global
0 . . ==
/oTAGEtag.example.com,2000.app/ I<tag:example.com,2000:app/foo> "bar"

[! foo "bar" Legend:
c-primary-tag-handle

Secondary Handle Thesecondary tag handis written as'! ! ”. This allows using a compact notation for a single “secondary
name space. By default, the prefix associated with this handagigdml.org,2002: ", This prefix is
used by the YAML tag repository.

It is possible to override this default behavior by providing an expli&G directive associating a different
prefix for this handle.

[91] c-secondary-tag-handle ::= “1” “I"

Example 6.19. Secondary Tag Handle

%TAG[!! tag:example.com,2000:app/ POYAML 1.2
—d” ift 1 - 3 # Interval, not integer I<tag:example.com,2000:app/int>"1 - 3"
Legend:

[C-Secondary-tag-handle

Named Handles A named tag handlsurrounds a non-empty name with” characters. A handle name must not be used i
a tag shorthand unless an expli@AG' directive has associated some prefix with it.

The name of the handle is a presentation detail and must not be used to convey content information. In
ular, the YAML processor need not preserve the handle name once parsing is completed.

[92] c-named-tag-handle ::= “I” ns-word-char+ “!"

Example 6.20. Tag Handles

%TAG] le! fag:example.com,2000:app/ COYAML 1.2

lel fdo "bar" I<tag:example.com,2000:app/foo> "bar"

Legend:
[C-named-tag-handle]

38

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

6.8.2.2. Tag Prefixes

There are twaag prefixvariants:
[93] ns-tag-prefix ::= c-ns-local-tag-prefix | ns-global-tag-prefix

Local Tag Prefix If the prefix begins with a!l*” character, shorthands using the handle are expanded to a local tag. Note
such a tag is intentionally not a valid URI, and its semantics are specific to the application. In particular
documents in the same stream may assign different semantics to the same local tag.

[94] c-ns-local-tag-prefix ::= “I" ns-uri-char*

Example 6.21. Local Tag Prefix

%TAG Im! |my- | POYAML 1.2
E%!ﬁgililﬁuger;icem ;-<_!my-light> "fluorescent"
%TAG Im! fmy-""] i’%}_YAML 12
;;!ﬁgch?ger;re I<Imy-light> "green"
Legend:

[c-ns-local-tag-prefix |

Global Tag Prefix If the prefix begins with a character other thar, ‘it must to be a valid URI prefix, and should contain at
least the scheme and the authority. Shorthands using the associated handle are expanded to globally
URI tags, and their semantics is consistent across applications. In particular, every documents in every
must assign the same semantics to the same global tag.

[95] ns-global-tag-prefix ::= ns-tag-char ns-uri-char*

Example 6.22. Global Tag Prefix

6TAG le! tag:example.com,2000:app/ | POYAML 1.2
:-!-e!foo "bar" I<tag:example.com,2000:app/foo> "bar"
Legend:

[ns-global-tag-prefix

6.9. Node Properties

Each node may have two optiopabperties anchor and tag, in addition to its content. Node properties may be specified in
order before the node’s content. Either or both may be omitted.

[96] c-ns-properties(n,c) ::= (c-ns-tag-property
(' s-separate(n,c) c-ns-anchor-property)?)
| (c-ns-anchor-property
(s-separate(n,c) c-ns-tag-property)?)

39

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

Example 6.23. Node Properties

DAYAML 1.2
IImap {
? &B1 llstr "foo"
: str "pbar",
Legend: 2 listr "baz"
[c-ns-properties(n,c) - *B1,
c-ns-anchor-property)

6.9.1. Node Tags

Thetag propertyidentifies the type of the native data structure presented by the node. A tag is denotéd bintieator.
[97] c-ns-tag-property ::= c-verbatim-tag
| c-ns-shorthand-tag
| c-non-specific-tag

Verbatim Tags A tag may be writteverbatimby surrounding it with thé<” and “>" characters. In this case, the YAML
processor must deliver the verbatim tag as-is to the application. In particular, verbatim tags are not sub
tag resolution. A verbatim tag must either begin with ‘a(& local tag) or be a valid URI (a global tag).

[98] c-verbatim-tag ::= “I" “<” ns-uri-char+ “>"

Example 6.24. Verbatim Tags

I<tag:yaml.org,2002:str> foo : | DoYAML 1.2

[i<tbar> bhz imap {

? I<tag:yaml.org,2002:str> "foo"

Legend:

Cc-verbaiim-fag | }2 I<lbar> "baz",
Example 6.25. Invalid Verbatim Tags
L1<1pfho ERROR:
L 1< $% > Bar - Verbatim tags aren't resolved,
""""" so ! fis |nvalid.

.........

URI tag nor a local tag starting
with 1.

40

http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

Tag Shorthands A tag shorthandtonsists of a valid tag handle followed by a non-empty suffix. The tag handle must be a

[99]

ciated with a prefix, either by default or by usingT&G directive. The resulting parsed tag is the concaten
ation of the prefix and the suffix, and must either begin with(& local tag) or be a valid URI (a global tag).

The choice of tag handle is a presentation detail and must not be used to convey content information.
ticular, the tag handle may be discarded once parsing is completed.

The suffix must not contain any * character. This would cause the tag shorthand to be interpreted as ha
a named tag handle. In addition, the suffix must not contairf thé}'”, “{”, “} "and “, " characters. These
characters would cause ambiguity with flow collection structures. If the suffix needs to specify any o
above restricted characters, they must be escaped usirif tbleatacter. This behavior is consistent with
the URI character escaping rules (specifically, section 2.3 of RFC2396).

c-ns-shorthand-tag ::= c-tag-handle ns-tag-char+

Example 6.26. Tag Shorthands

%TAG lel tag:example.com,2000:app/ CAYAML 1.2

- focal foo
St bar

- !E!tag%Zl bak

llseq [
I<llocal> "foo",
I<tag:yaml.org,2002:str> "bar",
I<tag:example.com,2000:app/tag!> "baz"

Legend:

|

[C-ns-shorthand-tag

Example 6.27. Invalid Tag Shorthands

%TAG le!l tag:example,2000:app/ ERROR:

.........

L The ! dle has no suffix.

.........

Non-Specific Tags If a node has no tag property, it is assigned a non-specific tag that needs to be resolved to a specific or

[100]

non-specific tag is!"” for non-plain scalars and* for all other nodes. This is the only case where the nod
style has any effect on the content information.

Itis possible for the tag property to be explicitly set to tHentbn-specific tag. By convention, this “disables”

tag resolution, forcing the node to be interpreted atag:yaml.org,2002:seq ,
“tag:yaml.org,2002:map ", or “tag:yaml.org,2002:str ", according to its kind.

There is no way to explicitly specify th@™non-specific tag. This is intentional.

c-non-specific-tag ::= “I”

Example 6.28. Non-Specific Tags

Assuming conventional resolution: DAYAML 1.2

- "12" -

- 12 llseq [

- ! I<tag:yaml.org,2002:str> "12",

Legend:

I<tag:yaml.org,2002:int> "12",
I<tag:yaml.org,2002:str> "12",

[c-non-specific-tag I

41

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/Style/XSL
http://www.renderx.com/

Basic Structures

6.9.2. Node Anchors

An anchor is denoted by th&” indicator. It marks a node for future reference. An alias node can then be used to indicate :
tional inclusions of the anchored node. An anchored node need not be referenced by any alias nodes; in particular, it is
all nodes to be anchored.

[101] c-ns-anchor-property ::= “&” ns-anchor-name
Note that as a serialization detail, the anchor name is preserved in the serialization tree. However, it is not reflected in the
entation graph and must not be used to convey content information. In particular, the YAML processor need not preserve th

name once the representation is composed.

Anchor names must not contain tHe',*“]1”, “{”, “}” and *, ” characters. These characters would cause ambiguity with flo
collection structures.

[102] ns-anchor-char ::= ns-char - c-flow-indicator
[103] ns-anchor-name ::= ns-anchor-char+

Example 6.29. Node Anchors

DOYAML 1.2
IImap {
? Ustr "First occurrence"
: &A llstr "Value",
? lstr "Second occurrence"
T *A,

}

42

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 7. Flow Styles

YAML'’s flow stylescan be thought of as the natural extension of JSON to cover folding long content lines for readability, ta
nodes to control construction of native data structures, and using anchors and aliases to reuse constructed object instan

7.1. Alias Nodes

Subsequent occurrences of a previously serialized node are presealiad asdesThe first occurrence of the node must be

marked by an anchor to allow subsequent occurrences to be presented as alias nodes.

An alias node is denoted by the” indicator. The alias refers to the most recent preceding node having the same anchor. It
error for an alias node to use an anchor that does not previously occur in the document. It is not an error to specify an an

is not used by any alias node.

Note that an alias node must not specify any properties or content, as these were already specified at the first occurren

node.

[104] c-ns-alias-node ::= “*" ns-anchor-name

Example 7.1. Alias Nodes

POYAML 1.2

IImap {
? llstr "First occurrence”
: &A llstr "Foo",

7.2. Empty Nodes

YAML allows the node content to be omitted in many cases. Nodes with empty content are interpreted as if they were plain

? llstr "Override anchor"

. &B !lstr "Bar",

? llstr "Second occurrence
CFA,

? llstr "Reuse anchor"

1 *B,

}

with an empty value. Such nodes are commonly resolvedrtalla * value.

[105] e-scalar ::= /* Empty */

In the examples, empty scalars are sometimes displayed as the°glypihclarity. Note that this glyph corresponds to a position

in the characters stream rather than to an actual character.

43

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

Example 7.2. Empty Content
[POYAML 1.2

foo : llstr ° D

o . IImap {

lstr° ,

) @ ? lstr "foo" : llstr ™,
? lUstr™ : llstr "bar",

Legend: }

Both the node’s properties and node content are optional. This allowsdordetely empty nod€ompletely empty nodes are
only valid when following some explicit indication for their existence.

[106] e-node ::= e-scalar

Example 7.3. Completely Empty Flow Nodes

{ COYAML 1.2
?foo:°, []

El bar, I'map {
) ? lstr "foo" : null ™,
? Unull™ : Ustr "bar",
Legend: }

7.3. Flow Scalar Styles

7.3.1.

YAML provides threeflow scalar stylesdouble-quoted, single-quoted and plain (unquoted). Each provides a different trade
between readability and expressive power.

The scalar style is a presentation detail and must not be used to convey content information, with the exception that plair
are distinguished for the purpose of tag resolution.

Double-Quoted Style

Thedouble-quoted stylis specified by surroundirfg’ ” indicators. This is the only style capable of expressing arbitrary string:
by using 1 ” escape sequences. This comes at the cost of having to escapéahd “' " characters.

“)

nb-double-char ::
ns-double-char ::

[107]
[108]

c-ns-esc-char | (nb-json - “\" -
nb-double-char - s-white

Double-quoted scalars are restricted to a single line when contained inside an implicit key.

[109] c-double-quoted(n,c) ::= “" nb-double-text(n,c) “*

[110] nb-double-text(n,c) ::= ¢ = flow-out 0 nb-double-multi-line(n)
¢ = flow-in O nb-double-multi-line(n)
¢ = block-key 0 nb-double-one-line
¢ = flow-key 0 nb-double-one-line

[111] nb-double-one-line ::= nb-double-char*

44

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

Example 7.4. Double Quoted Implicit Keys

DOYAML 1.2
IImap {
? Ustr "implicit block key"
i
Legend: ' ii;e;p[{
|nbdoub|eone||ne l ? Ustr "implicit flow key"
c-double-quoted(n,c). " st "value"
}
]
}

In a multi-line double-quoted scalar, line breaks are are subject to flow line folding, which discards any trailing white
characters. It is also possiblegscapéehe line break character. In this case, the line break is excluded from the content, an
trailing white space characters are preserved. Combined with the ability to escape white space characters, this allows
guoted lines to be broken at arbitrary positions.

[112] s-double-escaped(n) ::= s-white* “\" b-non-content

[-empty(n,flow-in)* s-flow-line-prefix(n)
[113] s-double-break(n) ::= s-double-escaped(n) | s-flow-folded(n)

Example 7.5. Double Quoted Line Breaks

“folded - DAYAML 1.2
to a space, N

P I: Iistr "folded to a space,\n\
Il R to a line feed, \
to a line feed, or - —»\l or \t \tnon-content"

-\ - non-content"

Legend:

All leading and trailing white space characters are excluded from the content. Each continuation line must therefore co
least one non-space character. Empty lines, if any, are consumed as part of the line folding.

[114] nb-ns-double-in-line ::= (s-white* ns-double-char)*
[115] s-double-next-line(n) ::= s-double-break(n)
(ns-double-char nb-ns-double-in-line
(s-double-next-line(n) | s-white*))?
[116] nb-double-multi-line(n) ::= nb-ns-double-in-line
(s-double-next-line(n) | s-white*)

45

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

Example 7.6. Double Quoted Lines

"[1stnon-empty |1 POYAML 1.2

l' I

: . lIstr " 1st non-empty\n\
= 2nd non-empty \
3rd non-empty "

Legend:

7.3.2. Single-Quoted Style

Thesingle-quoted styles specified by surroundirfg ” indicators. Therefore, within a single-quoted scalar, such characters ne
to be repeated. This is the only formestapingperformed in single-quoted scalars. In particular, Yieahd *' ” characters may
be freely used. This restricts single-quoted scalars to printable characters. In addition, it is only possible to break a long
guoted line where a space character is surrounded by non-spaces.

W owm

[117] c-quoted-quote ::=
[118] nb-single-char ::= c-quoted-quote | (nb-json - “")
[119] ns-single-char ::= nb-single-char - s-white

Example 7.7. Single Quoted Characters

|'here " § to'quotes™ 6YAML 1.2
Legend: Ilstr "here's to \"quotes\"™"

[C-quoted-quote]

Single-quoted scalars are restricted to a single line when contained inside a implicit key.

[120] c-single-quoted(n,c) ::= “" nb-single-text(n,c) “”

[121] nb-single-text(n,c) ::= ¢ = flow-out O nb-single-multi-line(n)
¢ = flow-in O nb-single-multi-line(n)
¢ = block-key O nb-single-one-line
c = flow-key O nb-single-one-line

[122] nb-single-one-line ::= nb-single-char*

Example 7.8. Single Quoted Implicit Keys

POYAML 1.2
I'map {
? lstr "implicit block key"
i
Legend: : i;fne;p[{
nb-singie-one-ine ___| 2 istr "implicit flow key"
c-single-quoted(n,c) - listr "value"
}
]
}

46

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

7.3.3.

All leading and trailing white space characters are excluded from the content. Each continuation line must therefore co
least one non-space character. Empty lines, if any, are consumed as part of the line folding.

[123] nb-ns-single-in-line ::= (s-white* ns-single-char)*
[124] s-single-next-line(n) ::= s-flow-folded(n)
(ns-single-char nb-ns-single-in-line
(s-single-next-line(n) | s-white*))?
[125] nb-single-multi-line(n) ::= nb-ns-single-in-line
(s-single-next-line(n) | s-white*)

Example 7.9. Single Quoted Lines

" [1st non-empty [PoYAML 1.2

l' .

llstr " 1st non-empty\n\
¢nd non-empty - |: 2nd non-empty \
-srdnon-empty -_J; 3rd non-empty "
Legend:

Plain Style

Theplain (unquoted) style has no identifying indicators and provides no form of escaping. It is therefore the most readable
limited and most context sensitive style. In addition to a restricted character set, a plain scalar must not be empty, or
leading or trailing white space characters. It is only possible to break a long plain line where a space character is surrou
non-spaces.

Plain scalars must not begin with most indicators, as this would cause ambiguity with other YAML constructs. HowevVer, th
“?” and *“- " indicators may be used as the first character if followed by a non-space “safe” character, as this causes no am

[126] ns-plain-first(c) ::= (. ns-char - c-indicator)

211

/* Followed by an ns-plain-safe(c)) */)

Plain scalars must never contain the * and “# " character combinations. Such combinations would cause ambiguity w
mappingkey: value pairs andomments. In addition, inside flow collections, or when used as implicit keys, plain scalars r

not contain the[*”, “1 7, “{”, “} " and “, ” characters. These characters would cause ambiguity with flow collection structure

[127] ns-plain-safe(c) ::= c = flow-out 0 ns-plain-safe-out
¢ = flow-in O ns-plain-safe-in
¢ = block-key 0 ns-plain-safe-out
¢ = flow-key O ns-plain-safe-in

[128] ns-plain-safe-out ::= ns-char
[129] ns-plain-safe-in ::= ns-char - c-flow-indicator
[130] ns-plain-char(c) ::= (ns-plain-safe(c) - “:" - “#")
| (/* An ns-char preceding */ “#")
| (“:" I* Followed by an ns-plain-safe(c) */)

47

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

Example 7.10. Plain Characters

Legend:

Outside flow collection: DOYAML 1.2
- o[ector
L r-o Ilseq [
L lstr "::vector”,
- Up ; up, and away! listr ™ - ()",
- 3 lstr "Up, up, and away!",
- http : /fexample.com/foo # bar Hint "-123",
Inside flow collection: lstr "http://example.com/foo#bar”,
T - llseq [
[_'.--(?-t:or’ lstr "::vector",
: L'_Q’_. lstr ™ - ()",
"Up , 'up and away!", llstr "Up, up, and away!",
BZ?” llint "-123",
http : /fexample.com/foo # bar] | | lstr "http://example.com/foo#bar",
I

Plain scalars are further restricted to a single line when contained inside an implicit key.

[131] ns-plain(n,c) ::= c = flow-out O ns-plain-multi-line(n,c)
¢ = flow-in O ns-plain-multi-line(n,c)
¢ = block-key O ns-plain-one-line(c)
¢ = flow-key O ns-plain-one-line(c)

[132] nb-ns-plain-in-line(c) ::= (s-white* ns-plain-char(c))*

[133] ns-plain-one-line(c) ::= ns-plain-first(c) nb-ns-plain-in-line(c)

Example 7.11. Plain Implicit Keys

implicit block key :[| POYAML 1.2
limplicit flow key : value] ;l-r-nap ‘
] ? lstr "implicit block key"
ol
Legend: : iifnegp[{
ns-pan-onedinete) ? llstr "implicit flow key"
: lstr "value”,
}
]
}

All leading and trailing white space characters are excluded from the content. Each continuation line must therefore co
least one non-space character. Empty lines, if any, are consumed as part of the line folding.

[134] s-ns-plain-next-line(n,c) ::= s-flow-folded(n)
ns-plain-char(c) nb-ns-plain-in-line(c)
[135] ns-plain-multi-line(n,c) ::= ns-plain-one-line(c)

s-ns-plain-next-line(n,c)*

48

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

Example 7.12. Plain Lines

Istnon-empty |1

...............................

DAYAML 1.2

lIstr "1st non-empty\n\
2nd non-empty \
3rd non-empty"

Legend:

7.4. Flow Collection Styles

A flow collectionmay be nested within a block collectidio-out

in context), or be a part of an implicit keflov-key

completely empty.

[136] in-flow(c) ::= c = flow-out

¢ = flow-in
¢ = block-key
¢ = flow-key

context oblock-key

O flow-in
O flow-in
O flow-key
O flow-key

context), nested within another flow collectidlo-
context). Flow collection entries are terminated
by the*, " indicator. The final , ” may be omitted. This does not cause ambiguity because flow collection entries can nev

7.4.1. Flow Sequences

Flow sequence conteist denoted by surroundiriq ” and“] ” characters.

[137] c-flow-sequence(n,c) ::= “[" s-separate(n,c)?
ns-s-flow-seg-entries(n,in-flow(c))? “I”

Sequence entries are separated by’aharacter.
[138] ns-s-flow-seq-entries(n,c) ::= ns-flow-seg-entry(n,c) s-separate(n,c)?

(" s-separate(n,c)?
ns-s-flow-seg-entries(n,c)?)?

Example 7.13. Flow Sequence

- [_ne, two,][] POYAML 1.2
- [three ,four] [] 1seq [
Legend: !!ﬁeq [.,
(C-Sequence-Star_c-sequence-end ot e
ns-flow-seg-entiry(in,c) 1 a ’
llseq [
lIstr "three",
lstr "four",
1,
I

Any flow node may be used as a flow sequence entry. In addition, YAML provides a compact notation for the case where
sequence entry is a mapping with a single key: value pair.

[139] ns-flow-seg-entry(n,c) ::= ns-flow-pair(n,c) | ns-flow-node(n,c)

49

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

Example 7.14. Flow Sequence Entries

[DOYAML 1.2
"double
—_— Ilseq [
uoted" , 'single
a ks |g llstr "double quoted",
quoted’, | llstr "single quoted",
plain lstr "plain text",
text, [nested], | llseq [
single: pair , | | ernested:
] Imap {
Legend: ? !!str""single"
: Nstr "pair”,

|

7.4.2. Flow Mappings

Flow mappingsare denoted by surroundifi§” and“}” characters.

[140] c-flow-mapping(n,c) ::= “{" s-separate(n,c)?
ns-s-flow-map-entries(n,in-flow(c))? “}”

Mapping entries are separated by, & ¢haracter.
[141] ns-s-flow-map-entries(n,c) ::= ns-flow-map-entry(n,c) s-separate(n,c)?

(" s-separate(n,c)?
ns-s-flow-map-entries(n,c)?)?

Example 7.15. Flow Mappings

(ore o, thieesfour 7 [PAVANL 1.2
i é':"s'i)’(”,"slé\'/éh elght}D ;l';eq :
Legend: Imap {

i ? llstr "one" : llstr "two",

? llstr "three" : llstr "four",
"""""""""""""""""""""" h
IImap {

? llstr "five" : lstr "six",

? llstr "seven" : llstr "eight”,

2

|

If the optional’ ?” mapping key indicatois specified, the rest of the entry may be completely empty.

[142] ns-flow-map-entry(n,c) ::= (“?” s-separate(n,c)
ns-flow-map-explicit-entry(n,c))
| ns-flow-map-implicit-entry(n,c)
[143] ns-flow-map-explicit-entry(n,c) ::= ns-flow-map-implicit-entry(n,c)
| (e-node /* Key */
e-node /* Value */)

50

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

Example 7.16. Flow Mapping Entries

r PAYAML 1.2

? explicit: entry |, '

oy creppemrems T lmap {

;T_F:_“? :t' entry . | 2 llstr "explicit” : llstr "entry",

LoL_) ? Ustr "implicit” : !lstr "entry”,
? Unull ™ : Nnull ™,

Legend:)

[NS-flow-map-explicit-entry(m,c)

Normally, YAML insists the' : ” mapping value indicatobe separated from the value by white space. A benefit of this restricti
is that the " character can be used inside plain scalars, as long as it is not followed by white space. This allows for un
URLs and timestamps. It is also a potential source for confusiaa s fs a plain scalar and not a key: value pair.

Note that the value may be completely empty since its existence is indicated by, the “

[144] ns-flow-map-implicit-entry(n,c) ::=

ns-flow-map-yaml-key-entry(n,c)

| c-ns-flow-map-empty-key-entry(n,c)
| c-ns-flow-map-json-key-entry(n,c)

[145] ns-flow-map-yaml-key-entry(n,c) ::

((s-separate(n,c)?

ns-flow-yaml-node(n,c)

c-ns-flow-map-separate-value(n,c))

| e-node)
c-ns-flow-map-empty-key-entry(n,c) ::

[146]

e-node /* Key */

c-ns-flow-map-separate-value(n,c)

c-ns-flow-map-separate-value(n,c) ::= “

[147] =
ns-plain-safe(c)

/* Not followed by an

*

((s-separate(n,c) ns-flow-node(n,c))

| e-node /* Value */)

Example 7.17. Flow Mapping Separate Values

{

http://foo.com ,
omitted value :°,

DAYAML 1.2

IImap {
? lstr "unquoted" : !!str "separate”,
? Ustr "http://foo.com” ; Inull ™",

? listr "omitted value" : 'null ™,
? Unull ™ : Nstr "omitted key",

}

51

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

To ensure JSON compatibility, if a key inside a flow mapping is JSON-like, YAML allows the following value to be spec
adjacent to the:*". This causes no ambiguity, as all JSON-like keys are surrounded by indicators. However, as this greatly re
readability, YAML processors should separate the value from: therf output, even in this case.

[148] c-ns-flow-map-json-key-entry(n,c) ::= c-flow-json-node(n,c)
((s-separate(n,c)?
c-ns-flow-map-adjacent-value(n,c))
| e-node)
[149] c-ns-flow-map-adjacent-value(n,c) ::= “:" ((s-separate(n,c)?
ns-flow-node(n,c))
| e-node) /* Value */

Example 7.18. Flow Mapping Adjacent Values

I PAYAML 1.2

.............

"adjacent" : value , :

--------------- il
"readable" : -]alue : E map { S " " "
= = ? lstr "adjacent" : !lstr "value”,
empty” ‘7 ? Ustr "readable" : !!str "value”,

} ? Ustr "empty" : Unull ™,

}

Legend:

A more compact notation is usable inside flow sequences, if the mapping corsiaigie &ey: value paifThis notation does not
require the surroundind ® and ‘} ” characters. Note that it is not possible to specify any node properties for the mapping in
case.

Example 7.19. Single Pair Flow Mappings

[COYAML 1.2
foo: bar
I llseq [

Imap { ? llstr "foo" : lstr "bar" }

Legend: I
ns-flow-pair(n,c) |

If the “?” indicator is explicitly specified, parsing is unambiguous, and the syntax is identical to the general case.
[150] ns-flow-pair(n,c) ::= (“?" s-separate(n,c)

ns-flow-map-explicit-entry(n,c))
| ns-flow-pair-entry(n,c)

Example 7.20. Single Pair Explicit Entry

[LOYAML 1.2

? foo
; llseq [

bar : baz imap {

I ? llstr "foo bar'

Legend: : llstr "baz",
Ins-flow-map-explicit-entry(n,c) |3

|

52

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

If the “?” indicator is omitted, parsing needs to see pasintipéicit keyto recognize it as such. To limit the amount of lookahea
required, the*” indicator must appear at most 1024 Unicode characters beyond the start of the key. In addition, the key is re:
to a single line.

Note that YAML allows arbitrary nodes to be used as keys. In particular, a key may be a sequence or a mapping. Thus,

the above restrictions, practical one-pass parsing would have been impossible to implement.

[151] ns-flow-pair-entry(n,c) ::= ns-flow-pair-yaml-key-entry(n,c)
| c-ns-flow-map-empty-key-entry(n,c)
| c-ns-flow-pair-json-key-entry(n,c)
[152] ns-flow-pair-yaml-key-entry(n,c) ::= ns-s-implicit-yaml-key(flow-key)
c-ns-flow-map-separate-value(n,c)
[153] c-ns-flow-pair-json-key-entry(n,c) ::= c-s-implicit-json-key(flow-key)
c-ns-flow-map-adjacent-value(n,c)
[154] ns-s-implicit-yaml-key(c) ::= ns-flow-yaml-node(n/a,c) s-separate-in-line?
/* At most 1024 characters altogether */
[155] c-s-implicit-json-key(c) ::= c-flow-json-node(n/a,c) s-separate-in-line?
/* At most 1024 characters altogether */

Example 7.21. Single Pair Implicit Entries

-[YAML. : deparate | ! POYAML 1.2
[i'-fﬂﬂ!—l‘flf?ﬁ?’--]—:;—;.—;.—;4 _____ , liseq [
[{ISON: like} :adjacent | | lseq |
Ima
Legend: 2 !!Etf "Y AML"
[nS-Ss-implicit-yaml-key - lstr "separate”
C-s-implicit-json-key "~~~ """} }
e-node :Valle ; 1 ’
llseq [
IImap {
? Unull ™
: lstr "empty key entry"
3
1,
llseq [
IImap {
? lImap {
? llstr "JSON"
2 lstr "like"
} : "adjacent”,
3
1,

|

Example 7.22. Invalid Implicit Keys

[oo ERROR:
bar : 'nvalid, - The fdo bar key|spans multiple lines

53

http://www.w3.org/Style/XSL
http://www.renderx.com/

Flow Styles

7.5. Flow Nodes

JSON-likeflow styles all have explicit start and end indicators. The only flow style that does not have this property is the
scalar. Note that none of the “JSON-like” styles is actually acceptable by JSON. Even the double-quoted style is a supers
JSON string format.

[156] ns-flow-yaml-content(n,c) ::= ns-plain(n,c)
[157] c-flow-json-content(n,c) ::= c-flow-sequence(n,c) | c-flow-mapping(n,c)
| c-single-quoted(n,c) | c-double-quoted(n,c)
[158] ns-flow-content(n,c) ::= ns-flow-yaml-content(n,c) | c-flow-json-content(n,c)

Example 7.23. Flow Content

- fla,b] POYAML 1.2
) Ilseq [
i -m llseq [llstr "a", llstr "b"],

Imap { ? llstr "a" : llstr "b" },

L& lstr "a",
lstr "b",

Legend: lstr "c",
[c-flow-json-content(n,c) I

A complete flow node also has optional node properties, except for alias nodes which refer to the anchored node propert

[159] ns-flow-yaml-node(n,c) ::= c-ns-alias-node
| ns-flow-yaml-content(n,c)
| (c-ns-properties(n,c)
((s-separate(n,c)
ns-flow-yaml-content(n,c))
| e-scalar))
[160] c-flow-json-node(n,c) ::= (c-ns-properties(n,c) s-separate(n,c))?
c-flow-json-content(n,c)
[161] ns-flow-node(n,c) ::= c-ns-alias-node
| ns-flow-content(n,c)
| (c-ns-properties(n,c)
((s-separate(n,c)
ns-flow-content(n,c))
| e-scalar))

Example 7.24. Flow Nodes

_ llstr "a" DOYAML 1.2
i 5 o Ilseq [
- ganchor " | Istr e,

- *anchor lstr "b",

st &A llstr "c",
"""""""" *A’

Legend: fstr ™,
c-flow-json-node(n,c) I

54

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 8. Block Styles

YAML'’s block styleemploy indentation rather than indicators to denote structure. This results in a more human readable (i
less compact) notation.

8.1. Block Scalar Styles

YAML provides twoblock scalar stylediteral and folded. Each provides a different trade-off between readability and expres
power.

8.1.1. Block Scalar Headers

Block scalars are controlled by a few indicators givenheaderpreceding the content itself. This header is followed by a no
content line break with an optional comment. This is the only case where a comment must not be followed by additional cc
lines.

[162] c-b-block-header(m,t) ::= ((c-indentation-indicator(m)
c-chomping-indicator(t))
| (c-chomping-indicator(t)
c-indentation-indicator(m)))
s-b-comment

Example 8.1. Block Scalar Header

- | # Empty header] OYAML 1.2
literal »
- > 1 # Indentation indicator L ﬁitqr [‘Iiteral\n"
folded - lstr "-folded\n”,
- | +[# Chomping indicator] listr "keep\n\n”
keep lstr "-strip”,

|
- > 1- # Both indicators L
-strip Legend:

[c-b-block-header(m,i)

8.1.1.1. Block Indentation Indicator

Typically, the indentation level of a block scalar is detected from its first non-empty line. It is an error for any of the leading ¢
lines to contain more spaces than the first non-empty line.

Detection fails when the first non-empty line contains leading content space characters. Content may safely start with a
“#” character.

When detection would fail, YAML requires that the indentation level for the content be given using anieglntétion indic-
ator. This level is specified as the integer number of the additional indentation spaces used for the content, relative to it
node.

Itis always valid to specify an indentation indicator for a block scalar node, though a YAML processor should only emitan e
indentation indicator for cases where detection will fail.

[163] c-indentation-indicator(m) ::= ns-dec-digit O m = ns-dec-digit - #x30
[* Empty */ 0 m = auto-detect()

55

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

Example 8.2. Block Indentation Indicator

_|°D

i

:detected

:detected

DAYAML 1.2

llseq [

llstr "detected\n”,

lstr "\n\n# detected\n",
lstr "-explicit\n",

listr "\t-detected\n",

|

- explicit Legend:

[c-indentation-indicator(m)

Example 8.3. Invalid Block Scalar Indentation Indicators

- |
-£;i
- >
--text
- text
I_-:ﬁext

L

ERROR:
- A leading all-space line must

not have too many spaces. |

- A following text line must

""""" ke e g, A
L

- The text is less indented |
than the indicated level.

8.1.1.2. Block Chomping Indicator

Chompingcontrols how final line breaks and trailing empty lines are interpreted. YAML provides three chomping methods

Strip

Clip

Keep

Strippingis specified by thé- " chomping indicator In this case, the final line break and any trailing empty lines au
excluded from the scalar’s content.

Clipping is the default behavior used if no explicit chomping indicator is specified. In this case, the final line b
character is preserved in the scalar’s content. However, any trailing empty lines are excluded from the scalar’s c

Keepingis specified by thé +" chomping indicator In this case, the final line break and any trailing empty lines a
considered to be part of the scalar’'s content. These additional lines are not subject to folding.

The chomping method used is a presentation detail and must not be used to convey content information.

[164] c-chomping-indicator(t) ::= “-" O t=strip
o 0 t=keep
/* Empty */ O t=clip
The interpretation of the final line break of a block scalar is controlled by the chomping indicator specified in the block -
header.
[165] b-chomped-last(t) ::= t = strip O b-non-content | /* End of file */
t = clip O b-as-line-feed | /* End of file */
t = keep O b-as-line-feed | /* End of file */

56

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

Example 8.4. Chomping Final Line Break

strip: |- PAYAML 1.2
text
clip: | map {
ot 1 ? Ustr "strip"
Lo : lstr "text",
keep: |+:___: 2 listr "clip"
text i1 : lstr "text\n",
? lstr "keep"
Legend: - Istr "text\n",
[b-non-content_b-ps-ling-feed }

The interpretation of the trailing empty lines following a block scalar is also controlled by the chomping indicator specified
block scalar header.

[166] I-chomped-empty(n,t) ::= t = strip O I-strip-empty(n)
t=clip O I-strip-empty(n)
t = keep O I-keep-empty(n)

[167] I-strip-empty(n) ::= (s-indent(<n) b-non-content)*

I-trail-comments(n)?
[168] I-keep-empty(n) ::= I-empty(n,block-in)*
I-trail-comments(n)?

Explicit comment lines may follow the trailing empty lines. To prevent ambiguity, the first such comment line must be less inc
than the block scalar content. Additional comment lines, if any, are not so restricted. This is the only case where the ind
of comment lines is constrained.

[169] I-trail-comments(n) ::= s-indent(<n) c-nb-comment-text b-comment
[-comment*

Example 8.5. Chomping Trailing Lines

Strip COYAML 1.2
Comments:
strip: |- IImap {
text ! ? llstr "strip"
(.. O 2 listr "# text",
FEra-— ? Ustr "clip"
% ______ : Nstr "# text\n",
[-# comments:”~~ 2 listr "keep"
I3 : llstr "# text\n",
clip: | }
text l
E Legend:
_ [-strip-empty(n) |
[ERED. Fkeep-empty(n)
- ¥ comments:___ [-trail-comments(n) ~~ """
1)
keep: |+
text l

57

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

8.1.2.

If a block scalar consists only of empty lines, then these lines are considered as trailing lines and hence are affected by ct

Example 8.6. Empty Scalar Chomping

strip: >- DAYAML 1.2
clip: > 'map { i
? Ustr "strip”

. D lstr ™,
k_(_a__ep. |+ ? Ustr "clip"
L S

. ? lstr "keep"
Legend: 2 str "\n",
[-strip-empty(n) T-keep-empty(n) . i

Literal Style

Theliteral styleis denoted by th&| ” indicator. It is the simplest, most restricted, and most readable scalar style.

[170] c-I+literal(n) ::= “|" c-b-block-header(m,t)
I-literal-content(n+m,t)

Example 8.7. Literal Scalar

|E COYAML 1.2
literal i [
e Istr "literal\n\ttext\n"
- stext L
4]
Legend:
C-IFliteral(n) |

Inside literal scalars, all (indented) characters are considered to be content, including white space characters. Note tha
break characters are normalized. In addition, empty lines are not folded, though final line breaks and trailing empty lir
chomped.

There is no way to escape characters inside literal scalars. This restricts them to printable characters. In addition, there i
to break a long literal line.

[171] I-nb-literal-text(n) ::= I-empty(n,block-in)*
s-indent(n) nb-char+
[172] b-nb-literal-next(n) ::= b-as-line-feed
I-nb-literal-text(n)
[173] I-literal-content(n,t) ::= (I-nb-literal-text(n) b-nb-literal-next(n)*
b-chomped-last(t))?
I-chomped-empty(n,t)

58

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

Example 8.8. Literal Content

DAYAML 1.2

I

I1str "\n\nliteral\n-\n\ntext\n"

E [-nb-literal-text(n)

8.1.3. Folded Style

Thefolded stylds denoted by th&>" indicator. It is similar to the literal style; however, folded scalars are subject to line foldir

[174] c-I+folded(n) ::= “>" c-b-block-header(m,t)
I-folded-content(n+m,t)

Example 8.9. Folded Scalar

E DAYAML 1.2
-folded
e O Istr "folded text\n"

‘text |

Legend:
[c-I+folded(n) |

[]

Folding allows long lines to be broken anywhere a single space character separates two non-space characters.

[175] s-nb-folded-text(n) ::= s-indent(n) ns-char nb-char*
[176] I-nb-folded-lines(n) ::= s-nb-folded-text(n)
(b-I-folded(n,block-in) s-nb-folded-text(n))*

59

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

Example 8.10. Folded Lines

...........

Comment

DAYAML 1.2

lstr "\n\
folded line\n\
next line\n\
\ * bullet\n
\n\
\ * list\n\
\ * lines\n\
\n\
last line\n"

Legend:

[S-nb-Tolded-texi(n)

(The following three examples duplicate this example, each highlighting different productions.)

Lines starting with white space charactem®(e-indentedines) are not folded.

[177]
[178]

s-nb-spaced-text(n) ::=
b-l-spaced(n) ::= b-as-line-feed
I-empty(n,block-in)*

[179] I-nb-spaced-lines(n) ::=

s-nb-spaced-text(n)

s-indent(n) s-white nb-char*

(b-I-spaced(n) s-nb-spaced-text(n))*

Example 8.11. More Indented Lines

>

folded
line

Comment

DAYAML 1.2

lstr "\n\

folded line\n\
next line\n\

\ * bullet\n
\n\

\ * list\n\

\ * lines\n\
\n\

last line\n"

Legend:

[E-nb-spaced-texi(n)

Line breaks and empty lines separating folded and more-indented lines are also not folded.

[180] I-nb-same-lines(n) ::= l-empty(n,block-in)*

(I-nb-folded-lines(n) | I-nb-spaced-lines(n))

60

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

[181] I-nb-diff-lines(n) ::= I-nb-same-lines(n)
(b-as-line-feed I-nb-same-lines(n))*

Example 8.12. Empty Separation Lines

> LOYAML 1.2
L
folded ”Strf"\lré\ d line\n\
line I olded line\n
next line\n\
v \ * bullet\n
next \n\
line \ * list\n\
* pbullet \ *lines\n\
\n\
* [ist last line\n"
* line Legend:
ii__i b-as-line-feed |
ast {(separation) l-empty(n,c) ..
line
Comment

The final line break, and trailing empty lines if any, are subject to chomping and are never folded.

[182] I-folded-content(n,t) ::= (I-nb-diff-lines(n) b-chomped-last(t))?
[-chomped-empty(n,t)

Example 8.13. Final Empty Lines

> LAYAML 1.2
folded
line I1str "\n\
folded line\n\
next next line\n\
line \ * bullet\n
* bullet \n\
\ * list\n\
* [ist \ *lines\n\
* line \n\
last line\n"
last

line Legend: o
!

8.2. Block Collection Styles

For readabilityplock collections stylesre not denoted by any indicator. Instead, YAML uses a lookahead method, where a t
collection is distinguished from a plain scalar only when a key: value pair or a sequence entry is seen.

61

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

8.2.1. Block Sequences

A block sequences simply a series of nodes, each denoted by a leadihigdicator. The *“ ” indicator must be separated from
the node by white space. This allows to be used as the first character in a plain scalar if followed by a non-space chare

(e.g. =1 7).

[183] I+block-sequence(n) ::= (s-indent(n+m) c-I-block-seq-entry(n+m))+
[* For some fixed auto-detected m > 0 */
[184] c-l-block-seq-entry(n) ::= “-" /* Not followed by an ns-char */
s-I+block-indented(n,block-in)

Example 8.14. Block Sequence

block sequence: DAYAML 1.2
one |
[- two : three] t'map {
? listr "block sequence”
Legend: Mseql
C--block-seq-entry(n) | istr “one”,
alito-deteicted s-indent(n) T RARATI.
: llstr "three"
3
I
}

The entry node may be either completely empty, be a nested block node, oong®at in-line notatioriThe compact notation
may be used when the entry is itself a nested block collection. In this case, bethitigicator and the following spaces are
considered to be part of the indentation of the nested collection. Note that it is not possible to specify node properties fol
collection.

[185] s-I+block-indented(n,c) ::= (s-indent(m)
(ns-l-compact-sequence(n+1+m)
| ns-l-compact-mapping(n+1+m)))
| s-I+block-node(n,c)
| (e-node s-l-comments)
[186] ns-l-compact-sequence(n) ::= c-I-block-seqg-entry(n)
('s-indent(n) c-l-block-seqg-entry(n))*

Example 8.15. Block Sequence Entry Types

CF# Empty DOYAML 1.2
l : I'seq [
plocknode i lnull ™,
- ;;-_9[1_6_#_(}9[7]9@9[____ IIstr "block node\n",
.- two # sequence | lseq [
_T_T:'='___':'___‘:‘='___':'___':‘=‘___':'_'_'T _____________ . !!Str Ilonell
- 'one: two # Compact mappin !
L. _,_._._‘_4_._,_._p_‘_4_._,_p_p_‘_g4_._,_._._‘l !!Str "two"’
Legend: 1
map {
SHblock-node(n;c) T 7 ot one
nis-I-compact-sequence(iy -~~~ ! strtwo’,
ns-I-CoMpactmapping(n) - -~ ~;] b

62

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

8.2.2. Block Mappings

A Block mappings a series of entries, each presenting a key: value pair.

[187] I+block-mapping(n) ::= (s-indent(n+m) ns-I-block-map-entry(n+m))+
/* For some fixed auto-detected m > 0 */

Example 8.16. Block Mappings

block mapping: COYAML 1.2

- key:value 1]

N 'map {

Legend: ? lstr "block mapping"
[nS-I-block-map-entry(n) :Umap {
auto-detected s-indent(n) ? listr "key"

: Ustr "value”,
3
}

If the “?” indicator is specified, the optional value node must be specified on a separate line, denoted 'bipdieator. Note
that YAML allows here the same compact in-line notation described above for block sequence entries.

[188] ns-I-block-map-entry(n) ::= c-l-block-map-explicit-entry(n)
| ns-I-block-map-implicit-entry(n)

[189] c-I-block-map-explicit-entry(n) ::= c-l-block-map-explicit-key(n)

(I-block-map-explicit-value(n)

| e-node)
[190] c-I-block-map-explicit-key(n) ::= “?” s-I+block-indented(n,block-out)
[191] I-block-map-explicit-value(n) ::= s-indent(n)

" s-I+block-indented(n,block-out)

Example 8.17. Explicit Block Mapping Entries

2 explicit key # Empty value e PDAYAML 1.2

>

71 llmap {

block key ! | ? lstr "explicit key"
s lstr ™,
? Ustr "block key\n"
:lseq [

Legend: listr "one",
[C-I-block-map-explicit-key(n) llstr "two",
I-block-map-explicit-value(n) .~~~ 1
E-node] }

If the “?” indicator is omitted, parsing needs to see past the implicit key, in the same way asingléh&ey: value paiflow
mapping. Hence, such keys are subject to the same restrictions; they are limited to a single line and must not span more t
Unicode characters.

[192] ns-I-block-map-implicit-entry(n) ::= (ns-s-block-map-implicit-key
| e-node)
c-I-block-map-implicit-value(n)

[193] ns-s-block-map-implicit-key ::= c-s-implicit-json-key(block-key)

| ns-s-implicit-yaml-key(block-key)

63

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

In this case, the value may be specified on the same line as the implicit key. Note however that in block mappings the val
never be adjacent to the™, as this greatly reduces readability and is not required for JSON compatibility (unlike the case in

mappings).

There is no compact notation for in-line values. Also, while both the implicit key and the value following it may be empty
“: " indicator is mandatory. This prevents a potential ambiguity with multi-line plain scalars.

[194] c-I-block-map-implicit-value(n) ::= “:” (s-I+block-node(n,block-out)
| (e-node s-l-comments))

Example 8.18. Implicit Block Mapping Entries

plain key :if-inevalue PoYAML 1.2
:-0.-.#-.-B.-O..t-h-.e-.r]:,,;::i::::::::: """""""""" | __

@ -------------- |_'___P_Y::_______; I'map {

‘quoted key" : | 2 listr "plain key"

centy - lstr "in-line value",

2 linull ™

Legend: : null ™,
[ns-s-block-map-implicii-key ? llstr "quoted key"
C-I-block-map-implicit-value(n) T : llseq [str "entry"],

}

A compact in-line notation is also available. This compact notation may be nested inside block sequences and explic
mapping entries. Note that it is not possible to specify node properties for such a nested mapping.

[195] ns-I-compact-mapping(n) ::= ns-I-block-map-entry(n)
(s-indent(n) ns-I-block-map-entry(n))*

Example 8.19. Compact Block Mappings

- sun: yellow] DOYAML 1.2
n ? edrth: blue 7] Hse [
: mdon: white 7| "!!n?ap{
listr "sun" : listr "yellow",
Legend: }
[Ns-I-compact-mapping(n) !;map{
? Imap {
? llstr "earth”
: lstr "blue”
}!
: Imap {
? llstr "moon”
: lstr "white"
}!
}

64

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

8.2.3. Block Nodes

YAML allows flow nodes to be embedded inside block collections (but not vice-versa). Flow nodes must be indented by ¢
one more space than the parent block collection. Note that flow nodes may begin on a following line.

It is at this point that parsing needs to distinguish between a plain scalar and an implicit key starting a nested block mapy
[196] s-I+block-node(n,c) ::= s-I+block-in-block(n,c) | s-I+flow-in-block(n)

[197] s-I+flow-in-block(n) ::= s-separate(n+1,flow-out)
ns-flow-node(n+1,flow-out) s-l-comments

Example 8.20. Block Node Types

R E POYAML 1.2

--"flow in block" L ;I;eq [

> _______________________ I1str "flow in block",

Block scalar L listr "Block scalar\n”,

- limap # Block collection 'map {

....‘:::.:::::::::::::::::: """""""""""""" 2 lstr llfooll

foo:bar . L : lstr "bar",

Legend: 12
[s-I+1low-In-block(n) |]

The block node’s properties may span across several lines. In this case, they must be indented by at least one more spac
block collection, regardless of the indentation of the block collection entries.

[198] s-I+block-in-block(n,c) ::= s-lI+block-scalar(n,c) | s-I+block-collection(n,c)
[199] s-I+block-scalar(n,c) ::= s-separate(n+1,c)

(c-ns-properties(n+1,c) s-separate(n+1,c))?

(c-I+literal(n) | c-I+folded(n))

Example 8.21. Block Scalar Nodes

literal: 2 [PAYAML 1.2
:|--value. AN IImap {

folded ‘ ? Ustr "literal"
oo - lstr "value",
>1 ? llstr "folded"
value 1: I<Ifoo> "value",
.............)

Legend:

65

http://www.w3.org/Style/XSL
http://www.renderx.com/

Block Styles

Since people perceive the™indicator as indentation, nested block sequences may be indented by one less space to comp
except, of course, if nested inside another block sequblomk{out context vsblock-in context).

[200] s-I+block-collection(n,c) ::= (s-separate(n+1,c) c-ns-properties(n+1,c))?
s-I-comments
(I+block-sequence(seg-spaces(n,c))
| I+block-mapping(n))
[201] seg-spaces(n,c) ::= ¢ = block-out 0 n-1
¢ = block-in On

Example 8.22. Block Collection Nodes

sequence: llseq PDOYAML 1.2

Femy ~

Ey::T I'map {

;;;S=e====-___1 ? listr "sequence”

-nesed 11 liseq [

mapping: gmap lstr "entry",

_f_O_O__BE_lr_____-: ______ !!Seq [llstr "nested"],

= '_.'_' et |] ,

Legend: ? llstr "mapping"
[+block-sequence(n) | - 'map {) o
Fblock-mapping(i) ? Ustr "foo" : !str "bar”,
s-I+block-collection{n.c)_______ "] }}'

66

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 9. YAML Character Stream

9.1. Documents

A YAML character stream may contain sevatatumentsEach document is completely independent from the rest.

9.1.1. Document Prefix

A document may be preceded byrafix specifying the character encoding, and optional comment lines. Note that all docum
in a stream must use the same character encoding. However it is valid to re-specify the encoding using a byte order mark
document in the stream. This makes it easier to concatenate streams.

The existence of the optional prefix does not necessarily indicate the existence of an actual document.

[202] I|-document-prefix ::= c-byte-order-mark? l-comment*

Example 9.1. Document Prefix

= # Comment COYAML 1.2
lines
:I I1str "Document”
Document
Legend:

[~document-prefix

9.1.2. Document Markers

Using directives creates a potential ambiguity. It is valid to ha®@ aHaracter at the start of a line (e.g. as the first character
the second line of a plain scalar). How, then, to distinguish between an actual directive and a content line that happens
with a “9% character?

The solution is the use of two speaiadrkerlines to control the processing of directives, one at the start of a document and
at the end.

At the start of a document, lines beginning witB&c¢haracter are assumed to be directives. The (possibly empty) list of directi
is terminated by directives end markdine. Lines following this marker can safely usé s the first character.

At the end of a documentdmcument end markdine is used to signal the parser to begin scanning for directives again.
The existence of this optiondbcument suffidoes not necessarily indicate the existence of an actual following document.

Obviously, the actual content lines are therefore forbidden to begin with either of these markers.

RN TR LN TR L]

[203] c-directives-end ::=
[204] c-document-end ;=" """
[205] I-document-suffix ::= c-document-end s-I-comments
[206] c-forbidden ::= /* Start of line */
(c-directives-end | c-document-end)
(b-char | s-white | /* End of file */)

67

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Character Stream

9.1.3.

9.1.4.

Example 9.2. Document Markers

POYAML 1.2
%YAML 1.2 -
I'str "Document”
Document Legend:
Ty A .
LS c-directives-end_c-dgcumentend 7
FOOCUMeTSaffix -~

Bare Documents

A bare documentloes not begin with any directives or marker lines. Such documents are very “clean” as they contain n
other than the content. In this case, the first non-comment line may not start %tfirst ‘character.

Document nodes are indented as if they have a parent indented at -1 spaces. Since a node must be more indented thar
node, this allows the document’s node to be indented at zero or more spaces.

[207] I-bare-document ::= s-I+block-node(-1,block-in)
/* Excluding c-forbidden content */

Example 9.3. Bare Documents

Bare COYAML 1.2
document
I1str "Bare document"
COYAML 1.2

No document

0
%!PS-Adobe-2.0 # Not the first line Legend:
[-bare-document |

IIstr "%!PS-Adobe-2.0\n"

Explicit Documents

An explicit documenbegins with an explicit directives end marker line but no directives. Since the existence of the docum
indicated by this marker, the document itself may be completely empty.

[208] I-explicit-document ::= c-directives-end
(I-bare-document
| (e-node s-l-comments))

68

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Character Stream

Example 9.4. Explicit Documents

DOYAML 1.2

{ matches

% 207 | map {

II lIstr "matches %": !lint "20"
Empty DOYAML 1.2

null ™

Legend:

[~explicit-document

9.1.5. Directives Documents

A directives documeriiegins with some directives followed by an explicit directives end marker line.

[209] I-directive-document ::= I-directive+
I-explicit-document

Example 9.5. Directives Documents

%YAML 1.2 CAYAML 1.2

llstr "%!PS-Adobe-2.0\n"

%!PS-Adobe-2.0 |

CAYAML 1.2
%YAML1.2 -

Inull

Empty

Legend:
[-explicit-document

9.2. Streams

A YAML streamconsists of zero or more documents. Subsequent documents require some sort of separation marker |i
document is not terminated by a document end marker line, then the following document must begin with a directives end
line.

The stream format is intentionally “sloppy” to better support common use cases, such as stream concatenation.

[210] l-any-document ::= [-directive-document
| I-explicit-document
| I-bare-document
[211] l-yaml-stream ::= |-document-prefix* I-any-document?
(I-document-suffix+ I-document-prefix* I-any-document?
| I-document-prefix* I-explicit-document?)*

69

http://www.w3.org/Style/XSL
http://www.renderx.com/

YAML Character Stream

Example 9.6. Stream

Document

Empty

DAYAML 1.2

I1str "Document”

DAYAML 1.2

[%YAML 1.2

oo Inull ™
matches %: 20 oy AML 1.2
"""""""" 0 .
Legend: ;l-r-nap (

Ilstr "matches %": !lint "20"

}

A sequence of bytes isveell-formed streanif, taken as a whole, it complies with the abtyaml-stream production.

Some common use case that can take advantage of the YAML stream structure are:

Appending to
Streams

Concatenating
Streams

Communication
Streams

Allowing multiple documents in a single stream makes YAML suitable for log files and similar applicatio
Note that each document is independent of the rest, allowing for heterogeneous log file entries.

Concatenating two YAML streams requires both to use the same character encoding. In addition, it is nec
to separate the last document of the first stream and the first document of the second stream. This is
ensured by inserting a document end marker between the two streams. Note that this is safe regardles
content of either stream. In particular, either or both may be empty, and the first stream may or may not a
contain such a marker.

The document end marker allows signaling the end of a document without closing the stream or starti
next document. This allows the receiver to complete processing a document without having to wait fc
next one to arrive. The sender may also transmit "keep-alive" messages in the form of comment lines or re
document end markers without signalling the start of the next document.

70

http://www.w3.org/Style/XSL
http://www.renderx.com/

Chapter 10. Recommended Schemas

A YAML schemds a combination of a set of tags and a mechanism for resolving non-specific tags.

10.1. Failsafe Schema

Thefailsafe schemi guaranteed to work with any YAML document. It is therefore the recommended schema for generic Y
tools. A YAML processor should therefore support this schema, at least as an option.

10.1.1. Tags
10.1.1.1. Generic Mapping

URI: tag:yaml.org,2002:map
Kind: Mapping.
Definition: Represents an associative container, where each key is unique in the association and mapped to exa

value. YAML places no restrictions on the type of keys; in particular, they are not restricted to being sc:
Example bindings to native types include Perl’'s hash, Python’s dictionary, and Java’s Hashtable.

Example 10.1!'map Examples

Block style: !Imap
Clark : Evans
Ingy : dét Net
Oren : Ben-Kiki

Flow style: !'map { Clark: Evans, Ingy: d6t Net, Oren: Ben-Kiki }

10.1.1.2. Generic Sequence

URI: tag:yaml.org,2002:seq
Kind: Sequence.
Definition: Represents a collection indexed by sequential integers starting with zero. Example bindings to native

include Perl's array, Python’s list or tuple, and Java’s array or Vector.

Example 10.2!!'seq Examples

Block style: !lseq
- Clark Evans

- Ingy dot Net

- Oren Ben-Kiki

Flow style: !lseq [Clark Evans, Ingy dét Net, Oren Ben-Kiki]

71

http://www.w3.org/Style/XSL
http://www.renderx.com/

Recommended Schemas

10.1.1.3. Generic String

URI: tag:yaml.org,2002:str
Kind: Scalar.
Definition: Represents a Unicode string, a sequence of zero or more Unicode characters. This type is usually be

the native language’s string type, or, for languages lacking one (such as C), to a character array.

Canonical Form: The obvious.

Example 10.3!!str Examples

Block style: !lstr |-
String: just a theory.

Flow style: !lstr "String: just a theory."

10.1.2. Tag Resolution

All nodes with the !"” non-specific tag are resolved, by the standard conventiontampyaml.org,2002:seq ”
“tag:yaml.org,2002:map ", or “tag:yaml.org,2002:str ", according to their kind.

All nodes with the ?” non-specific tag are left unresolved. This constrains the application to deal with a partial representa

10.2. JSON Schema

The JSON schemis the lowest common denominator of most modern computer languages, and allows parsing JSON fi
YAML processor should therefore support this schema, at least as an option. It is also strongly recommended that other !
should be based on it.

10.2.1. Tags

The JSON schema uses the following tags in addition to those defined by the failsafe schema:

10.2.1.1. Null

URI: tag:yaml.org,2002:null
Kind: Scalar.
Definition: Represents the lack of a value. This is typically bound to a native null-like valuei(elef., in Perl,None

in Python). Note that a null is different from an empty string. Also, a mapping entry with some key and &
value is valid, and different from not having that key in the mapping.

Canonical Form: null

Example 10.4.!'null Examples

Hnull null: value for null key
key with null value: !"null null

72

http://www.w3.org/Style/XSL
http://www.renderx.com/

Recommended Schemas

10.2.1.2. Boolean

URI:
Kind:

Definition:

Canonical Form:

tag:yaml.org,2002:bool
Scalar.

Represents a true/false value. In languages without a native Boolean type (such as C), is usually bou
native integer type, using one for true and zero for false.

Eithertrue orfalse

Example 10.5.!'bool Examples

'YAML is a superset of JSON: !lbool true
Pluto is a planet: !'bool false

10.2.1.3. Integer

URI:
Kind:

Definition:

Canonical Form:

tag:yaml.org,2002:int
Scalar.

Represents arbitrary sized finite mathematical integers. Scalars of this type should be bound to a native
data type, if possible.

Some languages (such as Perl) provide only a “number” type that allows for both integer and floating-
values. A YAML processor may use such a type for integers, as long as they round-trip properly.

In some languages (such as C), an integer may overflow the native type’s storage capability. A YAML proc
may reject such a value as an error, truncate it with a warning, or find some other manner to round-trif
general, integers representable using 32 binary digits should safely round-trip through most systems.

Decimal integer notation, with a leading™character for negative values, matching the regular expressi
0| -?[1-9] [0-9]*

Example 10.6.1lint Examples

negative: !lint -12
zero: lint O
positive: !lint 34

73

http://www.w3.org/Style/XSL
http://www.renderx.com/

Recommended Schemas

10.2.1.4. Floating Point

URI: tag:yaml.org,2002:float
Kind: Scalar.
Definition: Represents an approximation to real numbers, including three special values (positive and negative ir

and “not a number”).

Some languages (such as Perl) provide only a “number” type that allows for both integer and floating-
values. A YAML processor may use such a type for floating-point numbers, as long as they round-trip proj

Not all floating-point values can be stored exactly in any given native type. Hence a float value may cf
by “a small amount” when round-tripped. The supported range and accuracy depends on the implemen
though 32 bit IEEE floats should be safe. Since YAML does not specify a particular accuracy, using floa
point mapping keys requires great care and is not recommended.

Canonical Form: EitherO,.inf ,-inf ,.nan , or scientific notation matching the regular expressidt-9] (\. [O-
9] [1-9])7? (e [-+] [1-9] [0-9]*)?

Example 10.7 'float Examples

negative: !!float -1

zero: !lfloat O

positive: !!float 2.3e4
infinity: !!float .inf

not a number: !'float .nan

10.2.2. Tag Resolution

The JSON schema tag resolution is an extension of the failsafe schema tag resolution.

All nodes with the !"” non-specific tag are resolved, by the standard conventiontampyaml.org,2002:seq

“tag:yaml.org,2002:map ", or “tag:yaml.org,2002:str ", according to their kind.
Collections with the ?” non-specific tag (that is, untagged collections) are resolvedatpyaml.org,2002:seq " or
“tag:yaml.org,2002:map "according to their kind.

Scalars with the?” non-specific tag (that is, plain scalars) are matched with a list of regular expressions (first match wins
0 is resolved adint). In principle, JSON files should not contain any scalars that do not match at least one of these. |
the YAML processor should consider them to be an error.

Regular expression Resolved to tag

null tag:yaml.org,2002:null
true | false tag:yaml.org,2002:bool
-2 (0| [2-9] [0-9]*) tag:yaml.org,2002:int
2(0][1-91[09F) (\ [0-91)? ([eE][-+I? [0-9H)? tag:yaml.org,2002:float
* Error

74

http://www.w3.org/Style/XSL
http://www.renderx.com/

Recommended Schemas

Example 10.8. JSON Tag Resolution

A null: null

Booleans: [true, false]

Integers: [0, -0, 3,-19]

Floats: [0., -0.0, 12e03, -2E+05]

Invalid: [True, Null, 007, Ox3A, +12.3]

DAYAML 1.2

IImap {
lstr "A null" : Inull "null”,
listr "Booleans: !!'seq [

lbool "true", "bool “false"

]1

listr "Integers"; !lseq [
llint "0", Mint "-0",
llint "3", llint "-19"

]1

listr "Floats"; !'seq [
l'float "0.", !!float "-0.0",
l'float "12e03", !!float "-2E+05"
1,
lstr "Invalid"; llseq [
Rejected by the schema
True, Null, 007, Ox3A, +12.3,

1,

}

75

http://www.w3.org/Style/XSL
http://www.renderx.com/

Recommended Schemas

10.3. Core Schema

TheCore schemds an extension of the JSON schema, allowing for more human-readable presentation of the same types.
the recommended default schema that YAML processor should use unless instructed otherwise. It is also strongly recom
that other schemas should be based on it.

10.3.1. Tags

The core schema uses the same tags as the JSON schema.

10.3.2. Tag Resolution

The core schema tag resolution is an extension of the JSON schema tag resolution.

All nodes with the !"” non-specific tag are resolved, by the standard conventiontampyaml.org,2002:seq ,
“tag:yaml.org,2002:map ", or “tag:yaml.org,2002:str ", according to their kind.

Collections with the ?” non-specific tag (that is, untagged collections) are resolvedatpyaml.org,2002:seq or

“tag:yaml.org,2002:map "according to their kind.

Scalars with the?” non-specific tag (that is, plain scalars) are matched with an extended list of regular expressions. Hov
in this case, if none of the regular expressions matches, the scalar is restlggétal.org,2002:str (thatis, considered
to be a string).

Regular expression Resolved to tag

null | Null | NULL | ~ tag:yaml.org,2002:null

[* Empty */ tag:yaml.org,2002:null

true | True | TRUE | false | False | FALSE tag:yaml.org,2002:bool

[-+]? [0-9]+ tag:yaml.org,2002:int (Base 10)
0o [0-7]+ tag:yaml.org,2002:int (Base 8)

0x [0-9a-fA-F]+ tag:yaml.org,2002:int (Base 16)
F?(\ 09| 09H(\[09)?) (EE] 7091)? tag:yaml.org,2002:float (Number)
[-+]? (\inf | \.Inf | \.INF) tag:yaml.org,2002:float (Infinity)
\.nan | \.NaN | \.NAN tag:yaml.org,2002:float (Not a number
* tag:yaml.org,2002:str (Default)

76

http://www.w3.org/Style/XSL
http://www.renderx.com/

Recommended Schemas

Example 10.9. Core Tag Resolution

A null: null DAYAML 1.2

Also a null: # Empty

Not a null; ™" IImap {

Booleans: [true, True, false, FALSE | str "A null" : "'null "null”,
Integers: [0, 007, Ox3A, -19] lIstr "Also a null" : !null ",
Floats: [0., -0.0, .5, +12e03, -2E+05] llstr "Not a null" : llstr ",
Also floats: [.inf, -.Inf, +.INF, .NAN] listr "Booleans: !!'seq [

llbool "true”, !'bool "True",
llbool "false", !!lbool "FALSE",
]1
listr "Integers"; !lseq [
Ilint "0", llint "007",
Ilint "Ox3A", !lint "-19",
]1
listr "Floats"; !'seq [
l'float "0.", !'float "-0.0", "'float ".5",
l'float "+12e03", !!float "-2E+05"
]1
listr "Also floats": !'seq [
lIfloat ".inf", !'float "-.Inf",
l'float "+.INF", l/float ".NAN",
]1

10.4. Other Schemas

None of the above recommended schemas preclude the use of arbitrary explicit tags. Hence YAML processors for a p
programming language typically provide some form of local tags that map directly to the language’s native data structure
Iruby/object:Set).

While such local tags are useful for ad-hoc applications, they do not suffice for stable, interoperable cross-application o
platform data exchange.

Interoperable schemas make use of global tags (URIs) that represent the same data across different programming lang
addition, an interoperable schema may provide additional tag resolution rules. Such rules may provide additional regular expi
as well as consider the path to the node. This allows interoperable schemas to use untagged nodes.

It is strongly recommended that such schemas be based on the core schema defined above. In addition, it is strongly recol
that such schemas make as much use as possible of theNhetag repositorat http://yaml.org/type/. This repository provides
recommended global tags for increasing the portability of YAML documents between different applications.

The tag repository is intentionally left out of the scope of this specification. This allows it to evolve to better support YAMI
plications. Hence, developers are encouraged to submit new “universal” types to the repository. The yaml-core mailing i
tp:/lists.sourceforge.net/lists/listinfo/yaml-core is the preferred method for such submissions, as well as raising any quest
garding this draft.

77

http://yaml.org/type/
http://lists.sourceforge.net/lists/listinfo/yaml-core
http://lists.sourceforge.net/lists/listinfo/yaml-core
http://www.w3.org/Style/XSL
http://www.renderx.com/

C
I nd eX character encodin@l, 67, 70

in URI, 27
Indicators chomping, 19, 3%6, 58, 61
I tag indicator, 7, 2440 clip, 19,56
I local tag,13, 37, 39-41 keep, 1956
I non-specific tagl8, 41, 72, 74, 76 strip, 19,56

collection, 2, 12-1413, 16, 18, 74, 76

I primary tag handle37
P y 30 comment, 4, 9-10, 15-16, 18, 2B, 35, 47, 55, 57, 67, 70

Il secondary tag handI88

... named handle38, 41 compose, 910, 14, 18, 42
" double-quoted style, 244 construct, 910, 14, 17-18, 43, 71-73
comment, 4, 2R84, 47, 55 content, 5, 1012, 13, 17-18, 21, 26, 28, 30-35, 38-39, 41-45, 47-48,
% directive, 2536, 67-68 55-56, 58, 67-68
% escaping in URI, 127, 41 valid, 18
& anchor, 5, 2442 Cort])tlethil'g’ g "
ock-in, 19,

' reserved indicatof5

' single-quoted style, 246 block-key,19, 49

* alias, 5, 2443 block-out,19, 66
+ keep chompings6 flow-in, 19, 49
, end flow entry, 4, 23, 25, 27, 41-42, 49, 49-50 flow-key, 19, 49
- block sequence entry, 1, 4-5, 19, 22, 30, 4768166 flow-out, 19, 49
- strip chomping56
- mapping value, 1, 4-5, 22, 30, &1L, 63-64 D
<...> verbatim tag40 directive, 5, 10, 15-16, 235, 67-69
> folded style, 6, 2459 reserved, 1635
? mapping key, 5, 22, 30, 450, 63 TAG, 13, 16, 24, 3537, 41
? non-specific tadl8, 41, 72, 74, 76 YAML, 16, 35,36
@ reserved indicato5 document, 2, 5, 15-18, 21, 25, 36, 39,68,67-71, 77
[start flow sequence, 4, 23, 25, 27, 41-42,497, bare,68
\ escaping in double-quoted scal&8, 44 directives,69
] end flow sequence, 4, 23, 25, 27, 41-42,491, explicit, 68
{ start flow mapping, 4, 23, 25, 27, 41-42, &0, suffix, 67
| literal style, 6, 2458 dump, 9,10
} end flow mapping, 4, 23, 25, 27, 41-42, 50,
E
prefix, 67 empty line, 2, 632, 32-33, 55-58, 60-61
equality, 2, 10, 12-13,3, 16-18
A escaping
alias, 1-2, 5, 10, 14, 17-18, 24, 42-43, 54 in double-quoted scalars, 2, 6, 21, 28, 44-45
identified, 5,14, 17 in single-quoted scalar46
unidentified,17 in URIs, 27
anchor, 5, 1014, 17-18, 24, 39, 43, 54 non-content line breakd5
application, 1-2, 79, 10-11, 13-14, 18, 39-40, 70, 72, 77
I
B identity, 13
block scalar header, 385, 56-57 indicator, 1-2, 4, 16, 122, 33, 47, 52, 54-55, 61
byte order mark?1, 67 indentation 55
reserved25

information model11
invalid content, 1718

J
JSON compatibility, 21, 25, 28, 336, 52, 64
JSON-like, 5254

78

http://www.w3.org/Style/XSL
http://www.renderx.com/

Index

K
key, 2, 5, 10-1412, 18, 22, 52-53, 63, 71-72, 74
implicit, 35, 44, 46-4953, 63-65
order, 9-1114
key: value pair, 1, 4-3,2, 14, 16, 47, 51, 61, 63
kind, 10,12, 12-13, 16, 18, 41, 72, 74, 76

L
line break, 2, 6, 19-2@5, 26, 32-34, 45, 55-56, 58, 60-61
non-ASCII, 25, 36
normalization 26, 58
line folding, 2, 632, 43, 45, 47-48, 56, 59-61
block, 33, 59
flow, 33, 45
line prefix,31, 32
load, 9,10, 17
failure point, 1017

M
mapping, 1-2, 4-5, 14,2, 12-14, 18, 47, 49, 52-53, 71-72
marker, 1567, 68-69
directives end, 557, 68-69
document end, /7, 69-70
more-indented, 6, 380

N

native data structure, 1-2, 9-1M, 12-14, 17-18, 40, 43, 71-74, 77

need not3

node, 5, 1012, 12-19, 30, 39-43, 53-55, 62, 68, 72, 74, 76-77

completely empty44, 49-51, 62, 68
property,39, 43-44, 52, 54, 62, 64-65
root,12, 18

P

parse 10, 15, 18-19, 25-26, 28, 38, 41, 52-53, 63, 65, 67, 72

present, 9-1010, 12-13, 15-16, 21, 27, 40, 43, 63, 76
presentation, 9, 115, 19

S
scalar, 1-2, 6, 13,2, 12-13, 16, 18, 26, 31, 34, 43, 56, 71-74, 76
canonical form, 213, 16-17
content format, 10, 13, 156, 17
schemayl, 71-72, 76-77
core,76, 76-77
failsafe, 7,71, 72, 74
JSON, 7,72, 74,76
sequence, 1-2, 102, 12-14, 18, 53, 71
serialization, 9-1114, 14-16, 42
detail,10, 10-11, 14, 42
serialize, 1-210, 14, 43
shall,3
space, 2, &6, 30, 32, 46-47, 55, 59, 62, 65-66, 68
indentation, 1-2, 4, 10-11, 16, 18-30, 31, 33-36, 55, 57-58, 62,
65-66, 68
separation3l, 34, 51-52, 62
white, 20,26, 31, 33-34, 45-48, 51, 58-60, 62
stream, 2, 9-10, 15, 17-19, 21-22, 27, 34, 39, 436%7,
ill-formed, 10,17
well-formed, 17,70
style, 10-11, 15-1616, 18, 41, 44, 47
block, 2, 6, 16, 19, 3®&5, 62
collection, 4-5, 30, 4%1, 62, 65
folded, 6, 16, 24, 33, 55, 589
literal, 2, 6, 16, 24, 558, 59
mapping, 16, 1963, 65
scalar, 1655, 55-58
sequence, 4, 16, 19, B2, 63-64, 66
compact block collection, 162, 63-64
flow, 2, 4, 6, 16, 19, 3313, 49, 54, 65
collection, 19, 23, 25, 27, 41-42, 4R
double-quoted, 2, 6, 16, 19, 21, 24, 28,54
mapping, 4, 16, 19, 230, 63-64
plain, 6, 16, 18-19, 24, 41, 43-4¥, 51, 54, 61-62, 64-65, 67,
74,76
scalar, 6, 16, 31, 334
sequence, 4, 16, 239, 52

detail, 10, 10-11, 15-16, 18, 21, 26, 28, 30-31, 33-35, 38, 41, 44, single-quoted, 16, 19, 24, 46

56
printable character, 1-21, 26, 28, 46, 58

scalar,16, 28, 32, 44, 58
single key:value pair mapping, 14, 16, 89, 63

processor, 39, 10, 13, 15-18, 21, 25-27, 34-36, 38, 40, 42, 52, 55,

71-74, 76-77

R
represent, 1-210, 13-14, 71-74, 77
representation, 9-162, 18, 42
complete17, 18
partial,17, 18, 72
required,3

79

http://www.w3.org/Style/XSL
http://www.renderx.com/

Index

T
tab, 2, 2126, 30-31, 55
tag, 2, 7, 10, 12-133, 16-19, 24, 27, 37, 39, 41, 43, 71-72, 76-77
available,18
global, 2, 7, 1013, 18, 37, 39-41, 77
handle, 7, 9-10, 2487, 39, 41
named, 2738, 41
primary, 37
secondary38
local, 2, 7, 1013, 18, 24, 37, 39-41, 77
non-specific, 7, 10, 12,8, 24, 41, 71, 74, 76-77
prefix, 37,39, 41
property, 18, 2440
recognized18
repository, 7, 3877
bool, 73
float, 7,74
int, 7,73
map, 7,71
null, 7, 43,72
seq, 7,/1
str, 7,72
resolution, 13, 1718, 40-41, 44, 71-72, 74, 76-77
convention18, 41, 72, 74, 76
shorthand, 7, 27, 37-391
specific,18, 41
unavailable, 10, 1718
unrecognized, 17,8
unresolved, 1718
verbatim,40
trimming, 32

V
value, 1012, 13, 18, 22, 51-52, 64, 71-72

Y
YAML 1.1 processing, 2536

80

http://www.w3.org/Style/XSL
http://www.renderx.com/

	YAML Ain’t Markup Language (YAML™) Version 1.2
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Prior Art
	1.3. Relation to JSON
	1.4. Relation to XML
	1.5. Terminology

	Chapter 2. Preview
	2.1. Collections
	2.2. Structures
	2.3. Scalars
	2.4. Tags
	2.5. Full Length Example

	Chapter 3. Processing YAML Information
	3.1. Processes
	3.1.1. Dump
	3.1.2. Load

	3.2. Information Models
	3.2.1. Representation Graph
	3.2.1.1. Nodes
	3.2.1.2. Tags
	3.2.1.3. Node Comparison

	3.2.2. Serialization Tree
	3.2.2.1. Keys Order
	3.2.2.2. Anchors and Aliases

	3.2.3. Presentation Stream
	3.2.3.1. Node Styles
	3.2.3.2. Scalar Formats
	3.2.3.3. Comments
	3.2.3.4. Directives

	3.3. Loading Failure Points
	3.3.1. Well-Formed Streams and Identified Aliases
	3.3.2. Resolved Tags
	3.3.3. Recognized and Valid Tags
	3.3.4. Available Tags

	Chapter 4. Syntax Conventions
	4.1. Production Parameters
	4.2. Production Naming Conventions

	Chapter 5. Characters
	5.1. Character Set
	5.2. Character Encodings
	5.3. Indicator Characters
	5.4. Line Break Characters
	5.5. White Space Characters
	5.6. Miscellaneous Characters
	5.7. Escaped Characters

	Chapter 6. Basic Structures
	6.1. Indentation Spaces
	6.2. Separation Spaces
	6.3. Line Prefixes
	6.4. Empty Lines
	6.5. Line Folding
	6.6. Comments
	6.7. Separation Lines
	6.8. Directives
	6.8.1. “YAML” Directives
	6.8.2. “TAG” Directives
	6.8.2.1. Tag Handles
	6.8.2.2. Tag Prefixes

	6.9. Node Properties
	6.9.1. Node Tags
	6.9.2. Node Anchors

	Chapter 7. Flow Styles
	7.1. Alias Nodes
	7.2. Empty Nodes
	7.3. Flow Scalar Styles
	7.3.1. Double-Quoted Style
	7.3.2. Single-Quoted Style
	7.3.3. Plain Style

	7.4. Flow Collection Styles
	7.4.1. Flow Sequences
	7.4.2. Flow Mappings

	7.5. Flow Nodes

	Chapter 8. Block Styles
	8.1. Block Scalar Styles
	8.1.1. Block Scalar Headers
	8.1.1.1. Block Indentation Indicator
	8.1.1.2. Block Chomping Indicator

	8.1.2. Literal Style
	8.1.3. Folded Style

	8.2. Block Collection Styles
	8.2.1. Block Sequences
	8.2.2. Block Mappings
	8.2.3. Block Nodes

	Chapter 9. YAML Character Stream
	9.1. Documents
	9.1.1. Document Prefix
	9.1.2. Document Markers
	9.1.3. Bare Documents
	9.1.4. Explicit Documents
	9.1.5. Directives Documents

	9.2. Streams

	Chapter 10. Recommended Schemas
	10.1. Failsafe Schema
	10.1.1. Tags
	10.1.1.1. Generic Mapping
	10.1.1.2. Generic Sequence
	10.1.1.3. Generic String

	10.1.2. Tag Resolution

	10.2. JSON Schema
	10.2.1. Tags
	10.2.1.1. Null
	10.2.1.2. Boolean
	10.2.1.3. Integer
	10.2.1.4. Floating Point

	10.2.2. Tag Resolution

	10.3. Core Schema
	10.3.1. Tags
	10.3.2. Tag Resolution

	10.4. Other Schemas

	Index

